import java.util.Hashtable;

class DLinkedList {
String key; //键
int value; //值
DLinkedList pre; //双向链表前驱
DLinkedList next; //双向链表后继
}
public class LRUCache {
private Hashtable<String,DLinkedList> cache = new Hashtable<String,DLinkedList>();
private int count;
private int capacity;
private DLinkedList head, tail;
public LRUCache(int capacity) {
this.count = 0;
this.capacity = capacity;
head = new DLinkedList();
head.pre = null;
tail = new DLinkedList();
tail.next = null; head.next = tail;
tail.pre = head;
}
public int get(String key) {
DLinkedList node = cache.get(key);
if(node == null) return -1;
this.moveToHead(node);
return node.value;
}
public void set(String key,int value) {
DLinkedList node = cache.get(key);
if(node == null) {
DLinkedList newNode = new DLinkedList();
newNode.key = key;
newNode.value = value;
this.cache.put(key, newNode);
this.addNode(newNode);
++count; if(count>capacity) {
DLinkedList tail = this.popTail();
this.cache.remove(tail.key);
--count;
}
}
else {
node.value = value;
this.moveToHead(node);
}
}
private void addNode(DLinkedList node) {
node.pre = head;
node.next = head.next;
head.next.pre = node;
head.next = node;
}
private void removeNode(DLinkedList node) {
DLinkedList pre = node.pre;
DLinkedList next = node.next;
pre.next = next;
next.pre = pre;
}
private void moveToHead(DLinkedList node) {
this.removeNode(node);
this.addNode(node);
}
private DLinkedList popTail() {
DLinkedList res = tail.pre;
this.removeNode(res);
return res;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
DLinkedList node = head;
while(node != null){
sb.append(String.format("%s:%s ", node.key,node.value));
node = node.next;
}
return sb.toString();
}
public static void main(String[] args) {
LRUCache lru = new LRUCache(3);
lru.set("1", 7);
System.out.println(lru.toString());
lru.set("2", 0);
System.out.println(lru.toString());
lru.set("3", 1);
System.out.println(lru.toString());
lru.set("4", 2);
System.out.println(lru.toString());
lru.get("2");
System.out.println(lru.toString());
lru.set("5", 3);
System.out.println(lru.toString());
lru.get("2");
System.out.println(lru.toString());
lru.set("6", 4);
System.out.println(lru.toString());
/*
0ull:0 1:7 null:0
null:0 2:0 1:7 null:0
null:0 3:1 2:0 1:7 null:0
null:0 4:2 3:1 2:0 null:0
null:0 2:0 4:2 3:1 null:0
null:0 5:3 2:0 4:2 null:0
null:0 2:0 5:3 4:2 null:0
null:0 6:4 2:0 5:3 null:0
*/
}
}

那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。

整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。

LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 head 代表双向链表的表头,tail 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。

下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:

save("key1", 7)

save("key2", 0)

save("key3", 1)

save("key4", 2)

get("key2")

save("key5", 3)

get("key2")

save("key6", 4)

相应的 LRU 双向链表部分变化如下:

s = save, g = get

总结一下核心操作的步骤:

  1. save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。
  2. get(key),通过 HashMap 找到 LRU 链表节点,因为根据LRU 原理,这个节点是最新访问的,所以要把节点插入到队头,然后返回缓存的值。
【https://zhuanlan.zhihu.com/p/34133067】

HashMap+双向链表手写LRU缓存算法/页面置换算法的更多相关文章

  1. 页面置换算法 - FIFO、LFU、LRU

    缓存算法(页面置换算法)-FIFO. LFU. LRU 在前一篇文章中通过leetcode的一道题目了解了LRU算法的具体设计思路,下面继续来探讨一下另外两种常见的Cache算法:FIFO. LFU ...

  2. 操作系统-2-存储管理之LRU页面置换算法(LeetCode146)

    LRU缓存机制 题目:运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制. 它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - ...

  3. 操作系统笔记(六)页面置换算法 FIFO法 LRU最近最久未使用法 CLOCK法 二次机会法

    前篇在此: 操作系统笔记(五) 虚拟内存,覆盖和交换技术 操作系统 笔记(三)计算机体系结构,地址空间.连续内存分配(四)非连续内存分配:分段,分页 内容不多,就不做index了. 功能:当缺页中断发 ...

  4. 操作系统页面置换算法(opt,lru,fifo,clock)实现

    选择调出页面的算法就称为页面置换算法.好的页面置换算法应有较低的页面更换频率,也就是说,应将以后不会再访问或者以后较长时间内不会再访问的页面先调出. 常见的置换算法有以下四种(以下来自操作系统课本). ...

  5. 操作系统 页面置换算法LRU和FIFO

    LRU(Least Recently Used)最少使用页面置换算法,顾名思义,就是替换掉最少使用的页面. FIFO(first in first out,先进先出)页面置换算法,这是的最早出现的置换 ...

  6. (待续)C#语言中的动态数组(ArrayList)模拟常用页面置换算法(FIFO、LRU、Optimal)

    目录 00 简介 01 算法概述 02 公用方法与变量解释 03 先进先出置换算法(FIFO) 04 最近最久未使用(LRU)算法 05 最佳置换算法(OPT) 00 简介 页面置换算法主要是记录内存 ...

  7. 页面置换算法(最佳置换算法、FIFO置换算法、LRU置换算法、LFU置换算法)

    页面置换产生的原因是:分页请求式存储管理(它是实现虚拟存储管理的方法之一,其中一个特性是多次性-->多次将页面换入或换出内存) 效果最好的页面置换算法:最佳置换算法 比较常用的页面置换算法有:F ...

  8. 页面置换算法-LRU(Least Recently Used)c++实现

    最近最久未使用(LRU)置换算法 #include <iostream> #include <cstdio> #include <cstring> #include ...

  9. 页面置换算法之Clock算法

    1.前言 缓冲池是数据库最终的概念,数据库可以将一部分数据页放在内存中形成缓冲池,当需要一个数据页时,首先检查内存中的缓冲池是否有这个页面,如果有则直接命中返回,没有则从磁盘中读取这一页,然后缓存到内 ...

随机推荐

  1. Personal idea

    我的设想是在android上开发一款应用程序,整体上是一个指南针的样式,或许你可以称之为一个圆盘,在不同的场景下可以作为不同的功能,指南针,游戏转盘,数字转盘等等.界面可以在不同的情境下更换样式.

  2. #error#优化#Model#理解下面这句话错误所导致的错误:"传入一个对象,那么你就拥有了对象的属性"2

    CHENYILONG Blog #error#优化#Model#理解下面这句话错误所导致的错误:"传入一个对象,那么你就拥有了对象的属性"2 © chenyilong. Power ...

  3. Django rest framwork

    Restful API REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中文翻译为“表征状态转移” REST从资源的角度类 ...

  4. Macaca(一) - 环境配置

    Macaca是阿里提供的一套自动化测试框架,目前已开源. 花了两三个小时研究了一下Macaca的实现原理.因为很好奇它与appium.selenium有啥区别. 实现原理本质上与selenium的we ...

  5. 2016.07.15——istringstream测试

    istringstream测试 1.istringstream strcin(str),字符串(str)可以包括多个单词,单词之间使用空格分开 #include "stdafx.h" ...

  6. CodeForces 1096E: The Top Scorer

    一道经典组合数学+容斥题. 题目传送门:CF1096E. 题意简述: \(p\) 个人,每个人有得分 \(a_i\). 总得分 \(\sum a_i = s\). 第一个人得分 \(a_1 \ge r ...

  7. 【codeforces】【比赛题解】#868 CF Round #438 (Div.1+Div.2)

    这次是Div.1+Div.2,所以有7题. 因为时间较早,而且正好赶上训练,所以机房开黑做. 然而我们都只做了3题.:(. 链接. [A]声控解锁 题意: Arkady的宠物狗Mu-mu有一只手机.它 ...

  8. 【bzoj题解】1008 越狱

    题目描述 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱. 输入 输入两个整 ...

  9. Windows执行命令与下载文件总结

    1.前言 在渗透或是病毒分析总是会遇到很多千奇百怪的下载文件和执行命令的方法. 2.实现方式 2.1.Powershell win2003.winXP不支持 $client = new-object ...

  10. MVVM设计模式的事件绑定

    为什么要事件绑定 这个问题其实是很好理解的,因为事件是丰富多样的,单纯的命令绑定远不能覆盖所有的事件.例如Button的命令绑定能够解决Click事件的需求,但Button的MouseEnter.窗体 ...