100 Most Popular Machine Learning Video Talks
100 Most Popular Machine Learning Video Talks
- 26971 views, 1:00:45, Gaussian Process Basics, David MacKay, 8 comments
- 7799 views, 3:08:32, Introduction to Machine Learning, Iain Murray
- 16092 views, 1:28:05, Introduction to Support Vector Machines, Colin Campbell, 22 comments
- 5755 views, 2:53:54, Probability and Mathematical Needs, Sandrine Anthoine, 2 comments
- 7960 views, 3:06:47, A tutorial on Deep Learning, Geoffrey E. Hinto
- 3858 views, 2:45:25, Introduction to Machine Learning, John Quinn, 1 comment
- 13758 views, 5:40:10, Statistical Learning Theory, John Shawe-Taylor, 3 comments
- 12226 views, 1:01:20, Semisupervised Learning Approaches, Tom Mitchell,8 comments
- 1596 views, 1:04:23, Why Bayesian nonparametrics?, Zoubin Ghahramani, 1 comment
- 11390 views, 3:52:22, Markov Chain Monte Carlo Methods, Christian P. Robert,5 comments
- 3153 views, 2:15:00, Data mining and Machine learning algorithms, José L. Balcázar, 1 comment
- 10322 views, 5:15:43, Graphical models, Zoubin Ghahramani, 23 comments
- 11071 views, 1:05:40, Dirichlet Processes, Chinese Restaurant Processes, and all that,Michael I. Jordan, 7 comments
- 10550 views, 1:06:55, Generative Models for Visual Objects and Object Recognition via Bayesian Inference, Fei-Fei Li, 11 comments
- 9312 views, 03:21, K-nearest neighbor classification, Antal van den Bosch,7 comments
- 4800 views, 2:07:31, Patterns in Vector Spaces, Elisa Ricci, 1 comment
- 736 views, 16:55, Twitter Sentiment in Financial Domain, Miha Grčar, 1 comment
- 6789 views, 2:06:40, Introduction to kernel methods, Bernhard Schölkopf, 5 comments
- 6849 views, 2:54:37, Some Mathematical Tools for Machine Learning, Chris Burges, 6 comments
- 6792 views, 1:24:46, Bayesian Learning, Zoubin Ghahramani, 9 comments
- 6689 views, 4:33:48, Graphical Models and Variational Methods, Christopher Bishop, 11 comments
- 844 views, 17:05, High-Dimensional Graphical Model Selection, Animashree Anandkumar
- 5862 views, 57:16, Introduction to feature selection, Isabelle Guyon, 1 comment
- 5541 views, 2:14:21, Introduction to kernel methods, Alexander J. Smola, 8 comments
- 2304 views, 3:22:46, Introduction to Kernel Methods, Liva Ralaivola, 1 comment
- 723 views, 16:26, Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries, Zhen James Xiang
- 1628 views, 23:12, Gradient Boosted Decision Trees on Hadoop, Jerry Ye
- 5169 views, 4:16:53, Learning with Kernels,4 comments
- 2038 views, 03:18, Scikitlearn, Gael Varoquaux
- 4965 views, 32:36, The Dynamics of AdaBoost, Cynthia Rudin, 3 comments
- 4433 views, 2:16:17, Sequential Monte Carlo methods, Arnaud Doucet, 9 comments
- 4859 views, 1:37:46, Online Learning and Game Theory, Adam Kalai, 3 comments
- 4237 views, 20:36, Learning to align: a statistical approach, Elisa Ricci, 1 comment
- 2645 views, 21:49, Online Dictionary Learning for Sparse Coding, Julien Mairal, 1 comment
- 4727 views, 3:13:52, Bayesian Inference: Principles and Practice, Mike Tipping, 6 comments
- 1419 views, 2:49:30, Online Learning, Peter L. Bartlett
- 2973 views, 21:01, Training a Binary Classifier with the Quantum Adiabatic Algorithm, Hartmut Neven, 1 comment
- 3973 views, 08:55, Machine Learning for Stock Selection, Charles X. Ling,3 comments
- 3900 views, 2:56:35, Machine learning and finance, László Györfi, 3 comments
- 3517 views, 2:10:19, Learning with Gaussian Processes, Carl Edward Rasmussen,7 comments
- 222 views, 29:03, Generating Possible Interpretations for Statistics from Linked Open Data,Heiko Paulheim
- 4089 views, 2:32:26, Graph Matching Algorithms, Terry Caelli, 6 comments
- 3948 views, 3:39:05, Clustering – An overview, Marina Meila, 1 comment
- 3903 views, 2:11:59, An Introduction to Pattern Classification, Elad Yom Tov,1 comment
- 3896 views, 5:18:05, Statistical Learning Theory, Olivier Bousquet, 3 comments
- 1541 views, 38:10, Learning with similarity functions, Maria Balcan
- 51 views, 1:00:30, A Flexible Model for Count Data: The COM-Poisson Distribution, Galit Shmuél
- 331 views, 41:53, Automatic Discovery of Patterns in News Content, Nello Cristianini,2 comments
- 1132 views, 2:31:35, Gaussian Processes, Edwin V. Bonilla
- 2256 views, 1:08:39, Lecture 1 – The Motivation & Applications of Machine Learning, Andrew Ng
- 666 views, 21:47, On the Usefulness of Similarity based Projection Spaces for Transfer Learning, Emilie Morvant
- 1112 views, 36:35, Robust PCA and Collaborative Filtering: Rejecting Outliers, Identifying Manipulators, Constantine Caramanis
- 3294 views, 2:01:49, The EM algorithm and Mixtures of Gaussians, Joaquin Quiñonero Candela, 4 comments
- 3444 views, 5:35:17, Independent Component Analysis, Jean-François Cardoso, 2 comments
- 1918 views, 19:47, Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations, Honglak Lee
- 790 views, 1:00:20, Classification and Clustering in Large Complex Networks, Ina Eliasi-Rad
- 986 views, 2:44:35, Restricted Boltzmann Machines and Deep Belief Nets, Marcus Frean
- 23 views, 17:29, Improved Initialisation and Gaussian Mixture Pairwise Terms for Dense Random Fields with Mean-field Inference, Vibhav Vineet
- 1915 views, 1:22:16, Lecture 11 – Bayesian Statistics and Regularization, Andrew Ng
- 3129 views, 4:31:39, Kernel Methods, Alexander J. Smola 2 comments
- 2577 views, 1:21:29, Graphical models, Zoubin Ghahramani
- 2160 views, 1:00:37, Should all Machine Learning be Bayesian? Should all Bayesian models be non-parametric?, Zoubin Ghahramani, 2 comments
- 3018 views, 4:35:51, Graphical Models, Variational Methods, and Message-Passing, Martin J. Wainwright, 6 comments
- 3017 views, 3:43:43, Introduction to Kernel Methods, Bernhard Schölkopf, 1 comment
- 1257 views, 1:24:39, Reinforcement learning: Tutorial + Rethinking State, Action & Reward, Satinder Singh
- 1044 views, 18:34, On the stability and interpretability of prognosis signatures in breast cancer, Anne-Claire Haury,1 comment
- 2827 views, 00:58, Artificial intelligence: An instance of Aibo ingenuity, Michael Littman,2 comments
- 163 views, 22:35, Exploiting Information Extraction, Reasoning and Machine Learning for Relation Prediction, Xueyan Jiang,2 comments
- 1704 views, 2:42:22, Theory and Applications of Boosting, Robert Schapire,1 comment
- 387 views, 18:48, High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity, Po-Ling Loh
- 1912 views, 38:30, Machine learning and kernel methods for computer vision, Francis R. Bach
- 2755 views, 32:18, Neighbourhood Components Analysis, Sam Roweis,1 comment
- 2295 views, 28:18, Learning an Outlier-Robust Kalman Filter, Jo-Anne Ting,1 comment
- 1308 views, 25:08, Probabilistic Machine Learning in Computational Advertising, Thore Graepel
- 2670 views, 4:22:31, Gaussian Processes, Carl Edward Rasmussen, 2 comments
- 1772 views, 58:42, Probabilistic Decision-Making Under Model Uncertainty, Joelle Pineau
- 2198 views, 58:51, Who is Afraid of Non-Convex Loss Functions?, Yann LeCun
- 339 views, 54:15, Machine Learning Markets, Amos Storkey
- 2560 views, 1:49:01, Generalized Principal Component Analysis (GPCA), Rene Vidal,8 comments
- 1247 views, 25:00, FPGA-based MapReduce Framework for Machine Learning, Ningyi Xu
- 2527 views, 58:39, Latent Semantic Variable Models, Thomas Hofmann,3 comments
- 324 views, 18:31, k-NN Regression Adapts to Local Intrinsic Dimension, Samory Kpotufe
- 1485 views, 1:20:37, Lecture 14 – The Factor Analysis Model, Andrew Ng
- 2000 views, 1:11:49, Hierarchical Clustering, Yee Whye Teh
- 316 views, 16:38, Discussion of Erik Sudderth’s talk: NPB Hype or Hope?, Yann LeCun
- 309 views, 16:15, A Collaborative Mechanism for Crowdsourcing Prediction Problems, Jacob Aberneth
- 1993 views, 39:15, Speeding Up Stochastic Gradient Descent, Yoshua Bengio
- 126 views, 24:42, LODifier: Generating Linked Data from Unstructured Text, Isabelle Augenstein
- 304 views, 19:47, Iterative Learning for Reliable Crowdsourcing Systems, Sewoong Oh
- 1246 views, 24:03, Collaborative Filtering with Temporal Dynamics, Yehuda Koren
- 714 views, 21:56, HIV-Haplotype Inference using a Constraintbased Dirichlet Process Mixture Model, Sandhya Prabhakaran, Melanie Rey
- 1272 views, 22:40, Modeling the S&P 500 Index using the Kalman Filter and the LagLasso, Nicolas Mahle
- 2064 views, 10:47, Ten problems for the next 10 years, Pedro Domingos, 1 comment
- 2097 views, 23:15, Best Paper – Information-Theoretic Metric Learning, Brian Kulis
- 926 views, 1:10:31, Neuroscience, cognitive science and machine learning, Konrad Körding
- 2210 views, 1:21:57, Introduction to Kernel Methods, Partha Niyogi, 5 comments
- 291 views, 12:00, Fast and Accurate k-means For Large Datasets, Michael Shindler
- 2203 views, 2:56:16,Probabilistic and Bayesian Modelling I, Manfred Opper, 1 comment
- 2198 views, 1:00:00, Nonparametric Bayesian Models in Machine Learning, Zoubin Ghahramani
- 1901 views, 48:34,Machine Learning for Intrusion Detection, Pavel Laskov
Also: Stop by UCI (UC Irving) Machine Learning Repository for 295 Data Sets that can be accessed via searchable interface. Other Related articles
Related articles
- Scalable Machine Learning Course (datascience101.wordpress.com)
- 7th Annual Machine Learning Symposium (hunch.net)
- Message-Oriented Object Design and Machine Learning in JavaScript (architects.dzone.com)
- Large Scale (Machine) Learning at Twitter (videolectures.net)
- Hidden Benefits of Online Learning (i-programmer.info)
- Model checking and model understanding in machine learning (andrewgelman.com)
- Machine Learning Book for Students and Researchers (googleresearch.blogspot.com)
- Wagstaff (2012, jpl) machine learning that matters (slideshare.net)
- Why becoming a data scientist might be easier than you think (gigaom.com)
- The Man-Machine Framework: How to Build Machine-Learning Applications the Right Way (forbes.com)
100 Most Popular Machine Learning Video Talks的更多相关文章
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- A Gentle Guide to Machine Learning
A Gentle Guide to Machine Learning Machine Learning is a subfield within Artificial Intelligence tha ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- Machine Learning Note Phase 1( Done!)
Machine Learning 这是第一份机器学习笔记,创建于2019年7月26日,完成于2019年8月2日. 该笔记包括如下部分: 引言(Introduction) 单变量线性回归(Linear ...
- Machine Learning Trick of the Day (1): Replica Trick
Machine Learning Trick of the Day (1): Replica Trick 'Tricks' of all sorts are used throughout machi ...
- 机器学习算法之旅A Tour of Machine Learning Algorithms
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...
- My Reading List - Machine Learning && Computer Vision
本博客汇总了个人在学习过程中所看过的一些论文.代码.资料以及常用的资源与网站,为了便于记录自身的学习过程,将其整理于博客之中. Machine Learning (1) Machine Learnin ...
- Note for video Machine Learning and Data Mining——Linear Model
Here is the note for lecture three. the linear model Linear model is a basic and important model in ...
随机推荐
- 0428-Scrum团队成立
------------------------------3.0------------------------------------------ 一.项目要求 5.Scrum团队成立 5.1 团 ...
- mysql 函数示例(转)
MySQL函数大全及用法示例 1.字符串函数ascii(str) 返回字符串str的第一个字符的ascii值(str是空串时返回0) mysql> select ascii('2'); ...
- [转帖]AMD、英特尔为何争相走向胶水多核处理器?真相在此
AMD.英特尔为何争相走向胶水多核处理器?真相在此 胶水多核到底好不好?这个事不是简单一句话能说明的,今天的超能课堂里我们就来聊聊MCM胶水多核技术的过去及未来. 作者:孟宪瑞来源:超能网|2018- ...
- [转帖]Oracle字符集的查看与修改 --- 还未尝试 找个周六 试试.
Oracle 字符集的查看和修改 感谢原作者 改天试试 https://www.cnblogs.com/rootq/articles/2049324.html 一.什么是Oracle字符集 Oracl ...
- 校园网突围之路由器开wifi__windows版
之前有写过web版的登录介绍,但是有此人给我发邮件说web版的太麻烦,每次都要有内网才可以.在此我要说下web版的好处. 1.不用安装环境,并不是每个人电脑上都需要安装开发环境,你可以说你硬盘空间大, ...
- Hashtable 和 HashMap 以及 ConcurrentHashMap
备忘: ConcurrentHashMap与Hashtable的区别: Hashtable中采用的锁机制是一次锁住整个hash表,从而同一时刻只能由一个线程对其进行操作:而ConcurrentHash ...
- 【刷题】BZOJ 3732 Network
Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_ ...
- CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先)
CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先) 题意分析 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天, ...
- java多线程 -- Condition 控制线程通信
Api文档如此定义: Condition 将 Object 监视器方法(wait.notify 和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对 ...
- Android源码批量下载及导入到Eclipse
1.去http://code.google.com/p/msysgit/downloads/list 下载Git,进行安装 2.生成批量下载脚本文件 下载批量工具CreatAutoGetSh(工具 ...