为什么ConcurrentHashMap是弱一致的
为什么ConcurrentHashMap是弱一致的
本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识。happens-before相关内容参见:JLS §17.4.5. Happens-before Order、深入理解Java内存模型以及Happens before;ConcurrentHashMap的详细介绍以及底层原理见深入分析ConcurrentHashMap。本文将从ConcurrentHashMap的get,clear,iterator(entrySet、keySet、values方法)三个方法来分析它们的弱一致问题。
ConcurrentHashMap#get
get方法是弱一致的,是什么含义?可能你期望往ConcurrentHashMap底层数据结构中加入一个元素后,立马能对get可见,但ConcurrentHashMap并不能如你所愿。换句话说,put操作将一个元素加入到底层数据结构后,get可能在某段时间内还看不到这个元素,若不考虑内存模型,单从代码逻辑上来看,却是应该可以看得到的。
下面将结合代码和java内存模型相关内容来分析下put/get方法(本文中所有ConcurrentHashMap相关的代码均来自hotspot1.6.0_18)。put方法我们只需关注Segment#put,get方法只需关注Segment#get,在继续之前,先要说明一下Segment里有两个volatile变量:count和table;HashEntry里有一个volatile变量:value。
Segment#put
V put(K key, int hash, V value, boolean onlyIfAbsent) {
lock();
try {
int c = count;
if (c++ > threshold) // ensure capacity
rehash();
HashEntry<K,V>[] tab = table;
int index = hash & (tab.length - 1);
HashEntry<K,V> first = tab[index];
HashEntry<K,V> e = first;
while (e != null && (e.hash != hash || !key.equals(e.key)))
e = e.next; V oldValue;
if (e != null) {
oldValue = e.value;
if (!onlyIfAbsent)
e.value = value;
}
else {
oldValue = null;
++modCount;
tab[index] = new HashEntry<K,V>(key, hash, first, value);
count = c; // write-volatile
}
return oldValue;
} finally {
unlock();
}
}
Segment#get
V get(Object key, int hash) {
if (count != 0) { // read-volatile
HashEntry<K,V> e = getFirst(hash);
while (e != null) {
if (e.hash == hash && key.equals(e.key)) {
V v = e.value;
if (v != null)
return v;
return readValueUnderLock(e); // recheck
}
e = e.next;
}
}
return null;
}
我们如何确定线程1放入某个变量的值是否对线程2可见?文章开头提到的JLS链接中有说到,当a hb c时,a对c可见,那么我们接下来我们只要寻找put和get之间所有可能的执行轨迹上的hb关系。要找出hb关系,我们需要先找出与hb相关的Action。为方便,这里将两段代码放到了一张图片上。
可以注意到,同一个Segment实例中的put操作是加了锁的,而对应的get却没有。根据hb关系中的线程间Action类别,可以从上图中找出这些Action,主要是volatile读写和加解锁,也就是图中画了横线的那些。
put操作可以分为两种情况,一是key已经存在,修改对应的value;二是key不存在,将一个新的Entry加入底层数据结构。
key已经存在的情况比较简单,即if (e != null)部分,前面已经说过HashEntry的value是个volatile变量,当线程1给value赋值后,会立马对执行get的线程2可见,而不用等到put方法结束。
key不存在的情况稍微复杂一些,新加一个Entry的逻辑在else中。那么将new HashEntry赋值给tab[index]是否能立刻对执行get的线程可见呢?我们只需分析写tab[index]与读取tab[index]之间是否有hb关系即可。
假设执行put的线程与执行get的线程的轨迹是这样的
执行put的线程 | 执行get的线程 |
⑧tab[index] = new HashEntry<K,V>(key, hash, first, value) | |
②count = c | |
③if (count != 0) | |
⑨HashEntry e = getFirst(hash); |
tab变量是一个普通的变量,虽然给它赋值的是volatile的table。另外,虽然引用类型(数组类型)的变量table是volatile的,但table中的元素不是volatile的,因此⑧只是一个普通的写操作;count变量是volatile的,因此②是一个volatile写;③很显然是一个volatile读;⑨中getFirst方法中读取了table,因此包含一个volatile读。
根据Synchronization Order,对同一个volatile变量,有volatile写 hb volatile读。在这个执行轨迹中,时间上②在③之前发生,且②是写count,③是读count,都是针对同一个volatile变量count,因此有② hb ③;又因为⑧和②是同一个线程中的,③和⑨是同一个线程中的,根据Program Order,有⑧ hb ②,③ hb ⑨。目前我们有了三组关系了⑧ hb ②,② hb ③,③ hb ⑨,再根据hb关系是可传递的(即若有x hb y且y hb z,可得出x hb z),可以得出⑧ hb ⑨。因此,如果按照上述执行轨迹,⑧中写入的数组元素对⑨中的读取操作是可见的。
再考虑这样一个执行轨迹:
执行put的线程 | 执行get的线程 |
⑧tab[index] = new HashEntry<K,V>(key, hash, first, value) | |
③if (count != 0) | |
②count = c | |
⑨HashEntry e = getFirst(hash); |
这里只是变换了下执行顺序。每条语句的volatile读写含义同上,但它们之间的hb关系却改变了。Program Order是我们一直拥有的,即我们有⑧ hb ②,③ hb ⑨。但这次对volatile的count的读时间上发生在对count的写之前,我们无法得出② hb ⑨这层关系了。因此,通过count变量,在这个轨迹上是无法得出⑧ hb ⑨的。那么,存不存在其它可替换关系,让我们仍能得出⑧ hb ⑨呢?
我们要找的是,在⑧之后有一条语句或指令x,在⑨之前有一条语句或指令y,存在x hb y。这样我们可以有⑧ hb x,x hb y, y hb ⑨。就让我们来找一下是否存在这样的x和y。图中的⑤、⑥、⑦、①存在volatile读写,但是它们在⑧之前,因此对确立⑧ hb ⑨这个关系没有用处;同理,④在⑨之后,我们要找的是⑨之前的,因此也对这个问题无益。前面已经分析过了②,③之间没法确立hb关系。
在⑧之后,我们发现一个unlock操作,如果能在⑨之前找到一个lock操作,那么我们要找的x就是unlock,要找的y就是lock,因为Synchronization Order中有unlock hb lock的关系。但是,很不幸运,⑨之前没有lock操作。因此,对于这样的轨迹,是没有⑧ hb ⑨关系的,也就是说,如果某个Segment实例中的put将一个Entry加入到了table中,在未执行count赋值操作之前有另一个线程执行了同一个Segment实例中的get,来获取这个刚加入的Entry中的value,那么是有可能取不到的!
此外,如果getFirst(hash)先执行,tab[index] = new HashEntry<K,V>(key, hash, first, value)后执行,那么,这个get操作也是看不到put的结果的。
……
正是因为get操作几乎所有时候都是一个无锁操作(get中有一个readValueUnderLock调用,不过这句执行到的几率极小),使得同一个Segment实例上的put和get可以同时进行,这就是get操作是弱一致的根本原因。Java API中对此有一句简单的描述:
Retrievals reflect the results of the most recently completed update operations holding upon their onset.
也就是说API上保证get操作一定能看到已完成的put操作。已完成的put操作肯定在get读取count之前对count做了写入操作。因此,也就是我们第一个轨迹分析的情况。
ConcurrentHashMap#clear
clear方法很简单,看下代码即知。
public void clear() {
for (int i = 0; i < segments.length; ++i)
segments[i].clear();
}
因为没有全局的锁,在清除完一个segments之后,正在清理下一个segments的时候,已经清理segments可能又被加入了数据,因此clear返回的时候,ConcurrentHashMap中是可能存在数据的。因此,clear方法是弱一致的。
ConcurrentHashMap中的迭代器
ConcurrentHashMap中的迭代器主要包括entrySet、keySet、values方法。它们大同小异,这里选择entrySet解释。当我们调用entrySet返回值的iterator方法时,返回的是EntryIterator,在EntryIterator上调用next方法时,最终实际调用到了HashIterator.advance()方法,看下这个方法:
final void advance() {
if (nextEntry != null && (nextEntry = nextEntry.next) != null)
return; while (nextTableIndex >= 0) {
if ( (nextEntry = currentTable[nextTableIndex--]) != null)
return;
} while (nextSegmentIndex >= 0) {
Segment<K,V> seg = segments[nextSegmentIndex--];
if (seg.count != 0) {
currentTable = seg.table;
for (int j = currentTable.length - 1; j >= 0; --j) {
if ( (nextEntry = currentTable[j]) != null) {
nextTableIndex = j - 1;
return;
}
}
}
}
}
这个方法在遍历底层数组。在遍历过程中,如果已经遍历的数组上的内容变化了,迭代器不会抛出ConcurrentModificationException异常。如果未遍历的数组上的内容发生了变化,则有可能反映到迭代过程中。这就是ConcurrentHashMap迭代器弱一致的表现。
总结
ConcurrentHashMap的弱一致性主要是为了提升效率,是一致性与效率之间的一种权衡。要成为强一致性,就得到处使用锁,甚至是全局锁,这就与Hashtable和同步的HashMap一样了。
原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 为什么ConcurrentHashMap是弱一致的
为什么ConcurrentHashMap是弱一致的的更多相关文章
- Java:ConcurrentHashMap是弱一致的
本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识.happens-before相关内容参见:JLS §17 ...
- ConcurrentHashMap弱一致性
[原文链接] 本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识.happens-before相关内容参见: ...
- 并发编程 02—— ConcurrentHashMap
Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...
- 【转】ConcurrentHashMap完全解析(JDK6/7、JDK8)
转自http://my.oschina.net/hosee/blog/675884 并发编程实践中,ConcurrentHashMap是一个经常被使用的数据结构,相比于Hashtable以及Colle ...
- ConcurrentHashMap完全解析(jdk6/7,8)
并发编程实践中,ConcurrentHashMap是一个经常被使用的数据结构,相比于Hashtable以及Collections.synchronizedMap(),ConcurrentHashMap ...
- 计算机程序的思维逻辑 (74) - 并发容器 - ConcurrentHashMap
本节介绍一个常用的并发容器 - ConcurrentHashMap,它是HashMap的并发版本,与HashMap相比,它有如下特点: 并发安全 直接支持一些原子复合操作 支持高并发.读操作完全并行. ...
- 数据结构之ConcurrentHashMap
并发编程实践中,ConcurrentHashMap是一个经常被使用的数据结构,相比于Hashtable以及Collections.synchronizedMap(),ConcurrentHashMap ...
- jdk1.7/1.8 HashMap、ConcurrentHashMap详解
摘要: 本文主要参考网上Blog(详见Reference)总结ConcurrentHashMap的各方面知识,方便复习 转自:https://my.oschina.net/hosee/blog/675 ...
- 020-并发编程-java.util.concurrent之-jdk6/7/8中ConcurrentHashMap、HashMap分析
一.概述 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表. 是根据关键码值(Key ...
随机推荐
- C# 进程优先级和线程优先级的方法
C# 设置进程优先级的方法 this.process1= Process.GetCurrentProcess(); process1.PriorityClass = ProcessPriorityCl ...
- 中国移动CMPP协议错误码
中国移动CMPP协议错误码 状态码 说明 出现次数高 DELIVRD 消息发送成功 用户成功接收到短信 REJECTD 消息因为某些原因被拒绝不 ...
- [android] 手机卫士来电显示号码归属地
继续N天前的项目 开启服务监听手机来电,查询数据库,显示归属地 详细内容可以参考这篇博文:http://www.cnblogs.com/taoshihan/p/5331232.html Address ...
- 我在项目中运用 IOC(依赖注入)--实战篇
上一篇<我在项目中运用 IOC(依赖注入)--入门篇>只是简单的使用 IOC.实际项目使用 IOC 的情景复杂多了,比如说,构造函数有多个参数,有多个类继承同一个接口... Unity都有 ...
- 用面向对象的编程方式实现飞机大战小游戏,java版
概述 本文将使用java语言以面向对象的编程方式一步一步实现飞机大战这个小游戏 本篇文章仅供参考,如有写的不好的地方或者各位读者哪里没看懂可以在评论区给我留言 或者邮件8274551712@qq.co ...
- zoj 3286 Very Simple Counting---统计[1,N]相同因子个数
Very Simple Counting Time Limit: 1 Second Memory Limit: 32768 KB Let f(n) be the number of fact ...
- Maven配置私服仓库
首先就是,最基本的打开maven的配置文件,上面是我自己的习惯,多留一个以备不坏 打开setting配置文件,来修改路径(本人不习惯将所有软件放在C盘,一般都是单独存放盘) 接下来就是公司给你的账户和 ...
- ASP.NET Core 2 学习笔记(十一)Cookies & Session
基本上HTTP是没有记录状态的协定,但可以通过Cookies将Request来源区分出来,并将部分数据暂存于Cookies及Session,是写网站常用的用户数据暂存方式.本篇将介绍如何在ASP.NE ...
- JavsScript--on与addEventListener的使用与两者的不同
Js之on和addEventListener的使用与不同 一.首先介绍两者的用法: 1.on的用法:以onclick为例 第一种: obj.onclick = function(){ //do som ...
- cocos2d-x学习笔记--第一天记录
1.环境安装 http://www.cocos2d-x.org/ ---下载2.2.3--解压 https://www.python.org/ ---2.7.6 系统环境变量 设置安装目录 2创建一个 ...