为什么ConcurrentHashMap是弱一致的

本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识。happens-before相关内容参见:JLS §17.4.5. Happens-before Order深入理解Java内存模型以及Happens before;ConcurrentHashMap的详细介绍以及底层原理见深入分析ConcurrentHashMap。本文将从ConcurrentHashMap的get,clear,iterator(entrySet、keySet、values方法)三个方法来分析它们的弱一致问题。

ConcurrentHashMap#get

get方法是弱一致的,是什么含义?可能你期望往ConcurrentHashMap底层数据结构中加入一个元素后,立马能对get可见,但ConcurrentHashMap并不能如你所愿。换句话说,put操作将一个元素加入到底层数据结构后,get可能在某段时间内还看不到这个元素,若不考虑内存模型,单从代码逻辑上来看,却是应该可以看得到的。

下面将结合代码和java内存模型相关内容来分析下put/get方法(本文中所有ConcurrentHashMap相关的代码均来自hotspot1.6.0_18)。put方法我们只需关注Segment#put,get方法只需关注Segment#get,在继续之前,先要说明一下Segment里有两个volatile变量:counttable;HashEntry里有一个volatile变量:value

Segment#put

V put(K key, int hash, V value, boolean onlyIfAbsent) {
lock();
try {
int c = count;
if (c++ > threshold) // ensure capacity
rehash();
HashEntry<K,V>[] tab = table;
int index = hash & (tab.length - 1);
HashEntry<K,V> first = tab[index];
HashEntry<K,V> e = first;
while (e != null && (e.hash != hash || !key.equals(e.key)))
e = e.next; V oldValue;
if (e != null) {
oldValue = e.value;
if (!onlyIfAbsent)
e.value = value;
}
else {
oldValue = null;
++modCount;
tab[index] = new HashEntry<K,V>(key, hash, first, value);
count = c; // write-volatile
}
return oldValue;
} finally {
unlock();
}
}

Segment#get

V get(Object key, int hash) {
if (count != 0) { // read-volatile
HashEntry<K,V> e = getFirst(hash);
while (e != null) {
if (e.hash == hash && key.equals(e.key)) {
V v = e.value;
if (v != null)
return v;
return readValueUnderLock(e); // recheck
}
e = e.next;
}
}
return null;
}

我们如何确定线程1放入某个变量的值是否对线程2可见?文章开头提到的JLS链接中有说到,当a hb c时,a对c可见,那么我们接下来我们只要寻找put和get之间所有可能的执行轨迹上的hb关系。要找出hb关系,我们需要先找出与hb相关的Action。为方便,这里将两段代码放到了一张图片上。

可以注意到,同一个Segment实例中的put操作是加了锁的,而对应的get却没有。根据hb关系中的线程间Action类别,可以从上图中找出这些Action,主要是volatile读写和加解锁,也就是图中画了横线的那些。

put操作可以分为两种情况,一是key已经存在,修改对应的value;二是key不存在,将一个新的Entry加入底层数据结构。

key已经存在的情况比较简单,即if (e != null)部分,前面已经说过HashEntry的value是个volatile变量,当线程1给value赋值后,会立马对执行get的线程2可见,而不用等到put方法结束。

key不存在的情况稍微复杂一些,新加一个Entry的逻辑在else中。那么将new HashEntry赋值给tab[index]是否能立刻对执行get的线程可见呢?我们只需分析写tab[index]与读取tab[index]之间是否有hb关系即可。

假设执行put的线程与执行get的线程的轨迹是这样的

执行put的线程 执行get的线程
⑧tab[index] = new HashEntry<K,V>(key, hash, first, value)  
②count = c  
  ③if (count != 0)
  ⑨HashEntry e = getFirst(hash);

tab变量是一个普通的变量,虽然给它赋值的是volatile的table。另外,虽然引用类型(数组类型)的变量table是volatile的,但table中的元素不是volatile的,因此⑧只是一个普通的写操作;count变量是volatile的,因此②是一个volatile写;③很显然是一个volatile读;⑨中getFirst方法中读取了table,因此包含一个volatile读。

根据Synchronization Order,对同一个volatile变量,有volatile写 hb volatile读。在这个执行轨迹中,时间上②在③之前发生,且②是写count,③是读count,都是针对同一个volatile变量count,因此有② hb ③;又因为⑧和②是同一个线程中的,③和⑨是同一个线程中的,根据Program Order,有⑧ hb ②,③ hb ⑨。目前我们有了三组关系了⑧ hb ②,② hb ③,③ hb ⑨,再根据hb关系是可传递的(即若有x hb y且y hb z,可得出x hb z),可以得出⑧ hb ⑨。因此,如果按照上述执行轨迹,⑧中写入的数组元素对⑨中的读取操作是可见的。

再考虑这样一个执行轨迹:

执行put的线程 执行get的线程
⑧tab[index] = new HashEntry<K,V>(key, hash, first, value)  
  ③if (count != 0)
②count = c  
  ⑨HashEntry e = getFirst(hash);

这里只是变换了下执行顺序。每条语句的volatile读写含义同上,但它们之间的hb关系却改变了。Program Order是我们一直拥有的,即我们有⑧ hb ②,③ hb ⑨。但这次对volatile的count的读时间上发生在对count的写之前,我们无法得出② hb ⑨这层关系了。因此,通过count变量,在这个轨迹上是无法得出⑧ hb ⑨的。那么,存不存在其它可替换关系,让我们仍能得出⑧ hb ⑨呢?

我们要找的是,在⑧之后有一条语句或指令x,在⑨之前有一条语句或指令y,存在x hb y。这样我们可以有⑧ hb x,x hb y, y hb ⑨。就让我们来找一下是否存在这样的x和y。图中的⑤、⑥、⑦、①存在volatile读写,但是它们在⑧之前,因此对确立⑧ hb ⑨这个关系没有用处;同理,④在⑨之后,我们要找的是⑨之前的,因此也对这个问题无益。前面已经分析过了②,③之间没法确立hb关系。

在⑧之后,我们发现一个unlock操作,如果能在⑨之前找到一个lock操作,那么我们要找的x就是unlock,要找的y就是lock,因为Synchronization Order中有unlock hb lock的关系。但是,很不幸运,⑨之前没有lock操作。因此,对于这样的轨迹,是没有⑧ hb ⑨关系的,也就是说,如果某个Segment实例中的put将一个Entry加入到了table中,在未执行count赋值操作之前有另一个线程执行了同一个Segment实例中的get,来获取这个刚加入的Entry中的value,那么是有可能取不到的!

此外,如果getFirst(hash)先执行,tab[index] = new HashEntry<K,V>(key, hash, first, value)后执行,那么,这个get操作也是看不到put的结果的。

……

正是因为get操作几乎所有时候都是一个无锁操作(get中有一个readValueUnderLock调用,不过这句执行到的几率极小),使得同一个Segment实例上的put和get可以同时进行,这就是get操作是弱一致的根本原因。Java API中对此有一句简单的描述:

Retrievals reflect the results of the most recently completed update operations holding upon their onset.

也就是说API上保证get操作一定能看到已完成的put操作。已完成的put操作肯定在get读取count之前对count做了写入操作。因此,也就是我们第一个轨迹分析的情况。

ConcurrentHashMap#clear

clear方法很简单,看下代码即知。

public void clear() {
for (int i = 0; i < segments.length; ++i)
segments[i].clear();
}

因为没有全局的锁,在清除完一个segments之后,正在清理下一个segments的时候,已经清理segments可能又被加入了数据,因此clear返回的时候,ConcurrentHashMap中是可能存在数据的。因此,clear方法是弱一致的。

ConcurrentHashMap中的迭代器

ConcurrentHashMap中的迭代器主要包括entrySet、keySet、values方法。它们大同小异,这里选择entrySet解释。当我们调用entrySet返回值的iterator方法时,返回的是EntryIterator,在EntryIterator上调用next方法时,最终实际调用到了HashIterator.advance()方法,看下这个方法:

final void advance() {
if (nextEntry != null && (nextEntry = nextEntry.next) != null)
return; while (nextTableIndex >= 0) {
if ( (nextEntry = currentTable[nextTableIndex--]) != null)
return;
} while (nextSegmentIndex >= 0) {
Segment<K,V> seg = segments[nextSegmentIndex--];
if (seg.count != 0) {
currentTable = seg.table;
for (int j = currentTable.length - 1; j >= 0; --j) {
if ( (nextEntry = currentTable[j]) != null) {
nextTableIndex = j - 1;
return;
}
}
}
}
}

这个方法在遍历底层数组。在遍历过程中,如果已经遍历的数组上的内容变化了,迭代器不会抛出ConcurrentModificationException异常。如果未遍历的数组上的内容发生了变化,则有可能反映到迭代过程中。这就是ConcurrentHashMap迭代器弱一致的表现。

总结

ConcurrentHashMap的弱一致性主要是为了提升效率,是一致性与效率之间的一种权衡。要成为强一致性,就得到处使用锁,甚至是全局锁,这就与Hashtable和同步的HashMap一样了。

原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 为什么ConcurrentHashMap是弱一致的

为什么ConcurrentHashMap是弱一致的的更多相关文章

  1. Java:ConcurrentHashMap是弱一致的

    本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识.happens-before相关内容参见:JLS §17 ...

  2. ConcurrentHashMap弱一致性

    [原文链接] 本文将用到Java内存模型的happens-before偏序关系(下文将简称为hb)以及ConcurrentHashMap的底层模型相关的知识.happens-before相关内容参见: ...

  3. 并发编程 02—— ConcurrentHashMap

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

  4. 【转】ConcurrentHashMap完全解析(JDK6/7、JDK8)

    转自http://my.oschina.net/hosee/blog/675884 并发编程实践中,ConcurrentHashMap是一个经常被使用的数据结构,相比于Hashtable以及Colle ...

  5. ConcurrentHashMap完全解析(jdk6/7,8)

    并发编程实践中,ConcurrentHashMap是一个经常被使用的数据结构,相比于Hashtable以及Collections.synchronizedMap(),ConcurrentHashMap ...

  6. 计算机程序的思维逻辑 (74) - 并发容器 - ConcurrentHashMap

    本节介绍一个常用的并发容器 - ConcurrentHashMap,它是HashMap的并发版本,与HashMap相比,它有如下特点: 并发安全 直接支持一些原子复合操作 支持高并发.读操作完全并行. ...

  7. 数据结构之ConcurrentHashMap

    并发编程实践中,ConcurrentHashMap是一个经常被使用的数据结构,相比于Hashtable以及Collections.synchronizedMap(),ConcurrentHashMap ...

  8. jdk1.7/1.8 HashMap、ConcurrentHashMap详解

    摘要: 本文主要参考网上Blog(详见Reference)总结ConcurrentHashMap的各方面知识,方便复习 转自:https://my.oschina.net/hosee/blog/675 ...

  9. 020-并发编程-java.util.concurrent之-jdk6/7/8中ConcurrentHashMap、HashMap分析

    一.概述 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表. 是根据关键码值(Key ...

随机推荐

  1. Angular CLI 安装和使用以及安装失败的解决方法

    背景介绍 关于Angular版本,Angular官方已经统一命名Angular 1.x同一为Angular JS:Angular 2.x及以上统称Angular: CLI是Command Line I ...

  2. 撩课-Java每天5道面试题第23天

    146.什么是Spring MVC ?简单介绍下你对springMVC的理解? Spring MVC是一个基于MVC架构的 用来简化web应用程序开发的应用开发框架, 它是Spring的一个模块, 无 ...

  3. Java 使用new Thread和线程池的区别

    本文转至:https://www.cnblogs.com/cnmenglang/p/6273761.html , 孟凡柱的专栏 的博客,在此谢谢博主! 1.new Thread的弊端执行一个异步任务你 ...

  4. python 查询数据库返回的数据类型

    self.conn=MySQLdb.connect(host='localhost',port=3306, user='keystone', passwd='OptValley@4312', db=s ...

  5. Linux : task work 机制

    task work机制可以在内核中向指定的进程添加一些任务函数,这些任务函数会在进程返回用户态时执行,使用的是该进程的上下文.包括下面的这些API: task_work_add task_work_c ...

  6. ionic开发中遇到的问题

    开发调试过程中,会遇到这样的问题:同源策略请求url禁止请求. 一   网上搜的结果基本是2类: 1. 同源策略请求被阻止, 跨域问题,大家建议添加Access-Control-Allow-Origi ...

  7. 行动学习方法----PARR

  8. 【Android】Retrofit网络请求Service,@Path、@Query、@QueryMap...

    对Retrofit已经使用了一点时间了,是时候归纳一下各种网络请求的service了. 下面分为GET.POST.DELETE还有PUT的请求,说明@Path.@Query.@QueryMap.@Bo ...

  9. Oracle数据库日期格式转换操作

    1. 日期转化为字符串 (以2016年10月20日为例) select to_char(sysdate,'yyyy-mm-dd hh24:mi:ss')  strDateTime from dual; ...

  10. centos安装redis,并设置开机自动启动项

    安装Redis 1.下载.解压.编译.安装 下载.解压 https://redis.io/download 官网下载redis的*.tar.gz安装包.版本可根据自己需要下载. tar -zxvf r ...