题目大意:给你一个长度为$n$的序列$s$。$Q$个询问,问在$s$中的左端点在$[a,b]$之间,右端点在$[c,d]$之间的子段中,最大的中位数。 强制在线。

题解:区间中位数?二分答案,如果询问区间是给定的,对于每个询问,二分答案是多少,然后只要求出这个区间中有多少个数比二分的数大就行了,这就可以对每一个值建一棵主席树,把比它小的赋成$-1$,大于等于的赋成$1$,只需要区间和,就可以在$O(\log_2 n)$的时间判断一个解了。

但区间不给定。怎么办?注意到,$[b+1,c-1]$的值是必选的。所以一下这个区间的和是一定会产生贡献的。

而对于$[a,b],[c,d]$,因为要让中位数尽可能的大。所以,要让这里面的数比二分的答案大的数尽可能多。

也就是说,需要找一个$[a,b]$的最大后缀和,$[c,d]$的最大前缀和。这三个值的和就是给的询问中所有字段中对于二分的答案的最大的值了(也就是比二分答案大的数的个数减去比二分答案小的数的个数),也就是最优解。

问题是,我们二分的中位数不一定在询问的范围当中,会不会最后的答案不在这个区间内呢? 其实是不会的,如果区间外有个数满足要求,那么区间内一定会有个数大于等于它,显然区间内的那个数最优,而且也是满足中位数的要求的

卡点:1.求区间最大前缀和以及区间最大后缀和的线段树(主席树),的判断返回值条件和分治方法和普通的不同,而我按普通的在写

  2.我二分的答案是这个数是所有数中第几大的,然后就把$lastans$赋成了这个(应该赋成这个数是多少)

  3.洛谷有锅,一模一样的代码在洛谷上$30$[点击查看],在$darkbzoj$和$bzoj$上$AC$[点击查看](虽然后来也在洛谷上过了。。。。)

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 200100
#define N 3001500
using namespace std;
int root[maxn], lc[N], rc[N];
int idx;
bool flag;
struct node {
int r, sum, l; //r后缀,l前缀
inline bool operator == (node rhs) {return (r == rhs.r && sum == rhs.sum && l == rhs.l);}
} V[N], err; int n, Q, s[maxn], rnk[maxn];
int p[5], lastans = 0, ans; inline bool cmp(int a, int b) {return s[a] < s[b];}
inline int max(int a, int b) {return a > b ? a : b;} void update(int rt) {
V[rt].r = max(V[rc[rt]].r, V[rc[rt]].sum + V[lc[rt]].r);
V[rt].l = max(V[lc[rt]].l, V[lc[rt]].sum + V[rc[rt]].l);
V[rt].sum = V[lc[rt]].sum + V[rc[rt]].sum;
}
void build(int &rt, int l, int r) {
rt = ++idx;
if (l == r) {
V[rt].r = V[rt].sum = V[rt].l = 1;
return ;
}
int mid = l + r >> 1;
build(lc[rt], l, mid);
build(rc[rt], mid + 1, r);
update(rt);
}
void add(int &rt, int l, int r, int p) {
lc[++idx] = lc[rt], rc[idx] = rc[rt], rt = idx;
if (l == r) {
V[rt].r = V[rt].sum = V[rt].l = -1;
return ;
}
int mid = l + r >> 1;
if (p <= mid) add(lc[rt], l, mid, p);
else add(rc[rt], mid + 1, r, p);
update(rt);
}
int a, b, c, d;
node ask(int rt, int l, int r, int L, int R) {
if (!rt || l > r || L > R) return err;
if (L == l && R == r) return V[rt];
int mid = l + r >> 1;
if (R <= mid) return ask(lc[rt], l, mid, L, R);
if (L > mid) return ask(rc[rt], mid + 1, r, L, R);
node ans = ask(lc[rt], l, mid, L, mid), tmp = ask(rc[rt], mid + 1, r, mid + 1, R);
ans.l = max(ans.l, ans.sum + tmp.l);
ans.r = max(tmp.r, tmp.sum + ans.r);
ans.sum = ans.sum + tmp.sum;
return ans;
}
bool check(int mid) {
int tmp = ask(root[mid], 1, n, a, b).r + ask(root[mid], 1, n, b + 1, c - 1).sum + ask(root[mid], 1, n, c, d).l;
return tmp >= 0;
}
int main() {
scanf("%d", &n);
build(root[1], 1, n);
for (int i = 1; i <= n; i++) scanf("%d", &s[i]), rnk[i] = i;
sort(rnk + 1, rnk + n + 1, cmp);
for (int i = 2; i <= n; i++) {
root[i] = root[i - 1];
add(root[i], 1, n, rnk[i - 1]);
}
scanf("%d", &Q);
while (Q --> 0) {
scanf("%d%d%d%d", &a, &b, &c, &d);
p[0] = (a + lastans) % n + 1, p[1] = (b + lastans) % n + 1, p[2] = (c + lastans) % n + 1, p[3] = (d + lastans) % n + 1;
sort(p, p + 4);
a = p[0], b = p[1], c = p[2], d = p[3];
int L = 1, R = n;
while (L <= R) {
int mid = L + R + 1 >> 1;
if (check(mid)) {
L = mid + 1;
ans = mid;
} else R = mid - 1;
}
printf("%d\n", s[rnk[ans]]);
lastans = s[rnk[ans]];
}
return 0;
}

  

[洛谷P2839][国家集训队]middle的更多相关文章

  1. 洛谷P2839 [国家集训队]middle 主席树_二分

    Code: #include <cstdio> #include <algorithm> #include <cstring> #include <strin ...

  2. [洛谷2839/国家集训队]middle

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之 ...

  3. P2839 [国家集训队]middle

    P2839 [国家集训队]middle 好妙的题啊,,,, 首先二分一个答案k,把数列里>=k的数置为1,=0就是k>=中位数,<0就是k<中位数 数列的最大和很好求哇 左边的 ...

  4. 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)

    洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...

  5. [洛谷P1527] [国家集训队]矩阵乘法

    洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...

  6. 洛谷P1501 [国家集训队]Tree II(LCT,Splay)

    洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...

  7. 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)

    洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...

  8. 洛谷 P1407 [国家集训队]稳定婚姻 解题报告

    P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

  9. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

随机推荐

  1. SHOPEX快递单号查询插件圆通V8.2专版

    SHOPEX快递物流单号查询插件特色 本SHOPEX快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅急送快递.德邦物流.百世 ...

  2. 微信程序跳转到页面底部 scroll-view

    wx.createSelectorQuery().select('#j_page').boundingClientRect(function (rect) { wx.pageScrollTo({ sc ...

  3. Python练习笔记(2)

    文件读写,多线程.多进程 import time,os,threading,random def file_read(path): try: with open(path, 'r') as f: # ...

  4. 基于pygame的打砖块游戏,做到一半,不带做了

    跟着一个博主做的,前面的变量的定义全是内个哥们的,没带任何改动,就做了个界面,背景音乐,绘制了个小球,绘制了挡板 小球可以撞到边界反弹,然后做了砖块,定义了一个存放砖块的列表,,,就没有下文了 原博主 ...

  5. 什么是高防服务器?如何搭建DDOS流量攻击防护系统

    关于高防服务器的使用以及需求,从以往的联众棋牌到目前发展迅猛的手机APP棋牌,越来越多的游戏行业都在使用高防服务器系统,从2018年1月到11月,国内棋牌运营公司发展到了几百家. 棋牌的玩法模式从之前 ...

  6. R语言学习笔记(二): 类与泛型函数

    类 大多数R对象都是基于S3类(来源于第三代S语言),例如直方图函数hist()输出是一个包含多个组件的列表,它还有一个属性(attribute),用来指定列表的类,即histogram类. 泛型函数 ...

  7. C++ vector二维数组

    C++ 构建二维动态数组 int **p; p = ]; //注意,int*[10]表示一个有10个元素的指针数组 ; i < ; ++i) { p[i] = ]; } 这样就构成10*5的数组 ...

  8. Scala继承

    override重写 为什么要用override关键字?因为这样更清楚,不容易出错,比如打错字了,就没覆盖成功,但是不会报错 override可以覆盖feild和method class Person ...

  9. springmvc springboot 跨域问题(CORS)

    官方文档:http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cors.html springmvc s ...

  10. consul 使用方式

    1.在配置文件配置好的情况下,在运行 consul agent -server -datacenter=([xacl.json].[acl_datacenter]) -bootstrap -data- ...