题目描述

凡是考智商的题里面总会有这么一种消除游戏。不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏。我们的规则是,给出一个闭区间[a,b]中的全部整数,如果其中某两个数x,y(设x>y)的平方差x2-y2是一个完全平方数z2,并且y与z互质,那么就可以将x和y连起来并且将它们一起消除,同时得到x+y点分数。那么过关的要求就是,消除的数对尽可能多的前提下,得到足够的分数。快动手动笔算一算吧。

输入

只有一行,两个整数,分别表示a,b。

输出

两个数,可以消去的对数,及在此基础上能得到的最大分数。

样例输入

1 15

样例输出

2 34


题解

拆点+最大费用最大流

分析题目要求,发现x和y一定是互质的。

对于i和j,如果i和j符合题目要求,那么加i->j'和j->i',容量为1,费用为i+j的两条边。

对于所有的i,加S->i和i'->T,容量为1,费用为0的边。

然后跑最大费用最大流,答案为maxflow/2和mincost/2。

这样建图看起来是理所当然的。好像有什么问题?

会不会出现a1->a2',a2->a3',a3->a1'的情况?以及会不会TLE?

自己写一个程序试了一下,测试结果:不存在a1->a2',a2->a3',a3->a1'的情况,满足条件的点对最多只有316*2对。

然后跑一下最大费用最大流就AC了。

方法:先将cost取相反数,然后跑最小费用最大流,再对费用取相反数。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <queue>
using namespace std;
queue<int> q;
int head[2010] , to[100010] , val[100010] , cost[100010] , next[100010] , cnt = 1 , dis[2010] , from[2010] , pre[2010] , s , t;
int gcd(int x , int y)
{
return y ? gcd(y , x % y) : x;
}
void add(int x , int y , int z , int c)
{
to[++cnt] = y , val[cnt] = z , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int i , x;
memset(from , -1 , sizeof(from));
memset(dis , 0x7f , sizeof(dis));
dis[s] = 0;
q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
int main()
{
int n , a , b , i , j , tmp , maxflow = 0 , mincost = 0 , k;
scanf("%d%d" , &a , &b);
n = b - a + 1 , s = 0 , t = 2 * n + 1;
for(i = a ; i <= b ; i ++ )
{
for(j = a ; j < i ; j ++ )
{
tmp = (int)round(sqrt(i * i - j * j));
if(tmp * tmp == i * i - j * j && gcd(j , tmp) == 1)
add(i - a + 1 , j - a + 1 + n , 1 , - i - j) , add(j - a + 1 , i - a + 1 + n , 1 , - i - j);
}
}
for(i = 1 ; i <= n ; i ++ ) add(s , i , 1 , 0) , add(i + n , t , 1 , 0);
while(spfa())
{
k = 0x7f7f7f7f;
for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
maxflow += k , mincost += k * dis[t];
for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
}
printf("%d %d\n" , maxflow / 2 , -mincost / 2);
return 0;
}

【bzoj2661】[BeiJing wc2012]连连看 最大费用最大流的更多相关文章

  1. BZOJ_2661_[BeiJing wc2012]连连看_费用流

    BZOJ_2661_[BeiJing wc2012]连连看_费用流 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规 ...

  2. 【BZOJ2661】[BeiJing wc2012]连连看 最大费用流

    [BZOJ2661][BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给 ...

  3. [BZOJ2661][BeiJing wc2012]连连看 费用流

    2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1349  Solved: 577[Submit][ ...

  4. BZOJ2661: [BeiJing wc2012]连连看

    2661: [BeiJing wc2012]连连看 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 483  Solved: 200[Submit][S ...

  5. 【费用流】bzoj2661 [BeiJing wc2012]连连看

    将每个数拆点,互相连边,然后满足条件的数对之间互相连边,跑最大费用流,答案是流量和费用分别除以2. 一定要i->j.j->i都连上,否则可能会出现一个数在一边被选择了,在另一边的另一个匹配 ...

  6. BZOJ 2661: [BeiJing wc2012]连连看 费用流

    2661: [BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给出一个闭 ...

  7. [BeiJing wc2012]连连看(建模,最小费用最大流)

    前言 突然发现自己在图论①被dalao吊着打... Solution 看到数据范围1000,感觉可以直接枚举连边,然后新建两个点就好了. 注意要拆点,不然可能会死循环(过来人) 代码实现 #inclu ...

  8. [BeiJing wc2012]连连看

    题目链接 费用流板子+拆点 #include <bits/stdc++.h> using namespace std; typedef long long ll; inline int r ...

  9. bzoj 2661: [BeiJing wc2012]连连看

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #inclu ...

随机推荐

  1. aix下oracle 12.1.0.2 asmca不能打开的故障

    因为要添加一个新的13T磁盘组,所以决定通过asmca处理. 结果输入asmca之后,没有反应,前后两天都是如此. 第三天,IBM的存储工程师已经把心的MPIO挂上,如果还无法操作,只能使用asmcm ...

  2. 常见的Dom操作

    1.什么是DOM? DOM又称文档对象模型( DOM, Document Object Model )主要用于对HTML和XML文档的内容进行操作.DOM描绘了一个层次化的节点树,通过对节点进行操作, ...

  3. iWebShop产品功能技术优势有什么?

    iwebshop基于iweb si 框架开发,在获得iweb si 技术平台支持的条件下,iwebshop可以轻松满足用户量级百万至千万级的大型电子商务网站的性能要求.站点的集群与分布式技术(分布式计 ...

  4. Hive初识(三)

    根据用户的需求创建视图.可以将任何结果集数据保存为一个视图.视图在Hive的用法和SQL视图用法相同.它是一个标准的RDBMS概念.我们可以在视图上执行所有DML操作. 创建一个试图 可以创建一个试图 ...

  5. 对URI的理解

    在了解RESTful api的设计规范的时候,遇到了一个问题,就是uri和url有什关系,有什么区别,所以就在这里记录一下. URI(Uniform Resource Identifier),统一资源 ...

  6. java时间"yyyy-mm-dd HH:mm:ss"转成Date

    SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String time="1 ...

  7. SapScript

    * [OPEN_FORM] SAPscript: フォーム印刷の開始 * [START_FORM] SAPscript: 書式を開始 * [WRITE_FORM] SAPscript: 書式ウィンドウ ...

  8. 【TRICK】[0,n)中所有大小为k的子集的方法

    << k) - ; <<n)) { int x = comb & -comb, y = comb + x; comb = (((comb & ~y)/x)> ...

  9. 微信H5支付 在其他浏览器调用微信支付

    微信H5支付的相关资料不是很多.不过步骤上来说不是很复杂 比公众号支付简单很多. 先上官方文档吧 https://pay.weixin.qq.com/wiki/doc/api/H5.php?chapt ...

  10. exchange 2007迁移到2010

    标签:exchange 2007 2010 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://zpf666.blog.51cto.c ...