Description

This year, there have been many problems with population calculations, since in some cities, there are many emigrants, or the population growth is very high. Every year the ACM (for Association for Counting Members) conducts a census in each region. The country is divided into N^2 regions, consisting of an N x N grid of regions. Your task is to find the least, and the greatest population in some set of regions. Since in a single year there is no significant change in the populations, the ACM modifies the population counts by some number of inhabitants.

The Input

In the first line you will find N (0 <= N <= 500), in following the N lines you will be given N numbers, which represent, the initial population of city C [i, j]. In the following line is the number Q (Q <= 40000), followed by Q lines with queries: 
There are two possible queries: 
- "x1 y1 x2 y2" which represent the coordinates of the upper left and lower right of where you must calculate the maximum and minimum change in population. 
- "x y v" indicating a change of the population of city C [x, y] by value v.

The Output

For each query, "x1 y1 x2 y2" print in a single line the greatest and least amount of current population. Separated each output by a space.

题目大意:一个n*m的矩阵上有些数,单点修改,区域查询。

思路:二维线段树裸题。抄个代码体验一下。

代码(502MS):

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int INF = 0x7fffffff;
const int MAXN = ;
struct IntervaTree2D {
int Max[MAXN][MAXN], Min[MAXN][MAXN], n, m;
int xo, xleaf, x1, y1, x2, y2, x, y, v, vmax, vmin; void query1D(int o, int L, int R) {
if(y1 <= L && R <= y2) {
vmax = max(vmax, Max[xo][o]); vmin = min(vmin, Min[xo][o]);
}
else {
int M = (L + R) >> ;
if(y1 <= M) query1D(o * , L, M);
if(M < y2) query1D(o * + , M + , R);
}
} void query2D(int o, int L, int R) {
if(x1 <= L && R <= x2) {xo = o; query1D(, , m);}
else {
int M = (L + R) >> ;
if(x1 <= M) query2D(o * , L, M);
if(M < x2) query2D(o * + , M + , R);
}
} void modify1D(int o, int L, int R) {
if(L == R) {
if(xleaf) {Max[xo][o] = Min[xo][o] = v; return ;}
Max[xo][o] = max(Max[xo * ][o], Max[xo * + ][o]);
Min[xo][o] = min(Min[xo * ][o], Min[xo * + ][o]);
}
else {
int M = (L + R) >> ;
if(y <= M) modify1D(o * , L, M);
else modify1D(o * + , M + , R);
Max[xo][o] = max(Max[xo][o * ], Max[xo][o * + ]);
Min[xo][o] = min(Min[xo][o * ], Min[xo][o * + ]);
}
} void modify2D(int o, int L, int R) {
if(L == R) {xo = o; xleaf = ; modify1D(, , m);}
else {
int M = (L + R) / ;
if(x <= M) modify2D(o * , L, M);
else modify2D(o * + , M + , R);
xo = o; xleaf = ; modify1D(, , m);
}
} void query() {vmax = -INF; vmin = INF; query2D(, , n);}
void modify() {modify2D(, , n);}
} t; int main() {
int n, m, Q;
char op[];
scanf("%d%d", &n, &m);
t.n = n; t.m = m;
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) {
scanf("%d", &t.v);
t.x = i, t.y = j;
t.modify();
}
scanf("%d", &Q);
while(Q--) {
scanf("%s", op);
if(*op == 'q') {
scanf("%d%d%d%d", &t.x1, &t.y1, &t.x2, &t.y2);
t.query();
printf("%d %d\n", t.vmax, t.vmin);
} else {
scanf("%d%d%d", &t.x, &t.y, &t.v);
t.modify();
}
}
return ;
}

UVA 11297 Census(二维线段树)的更多相关文章

  1. UVa 11297 Census (二维线段树)

    题意:给定上一个二维矩阵,有两种操作 第一种是修改 c x y val 把(x, y) 改成 val 第二种是查询 q x1 y1 x2 y2 查询这个矩形内的最大值和最小值. 析:二维线段树裸板. ...

  2. UVA 11297 Census ——二维线段树

    [题目分析] 二维线段树模板题目. 简直就是无比的暴力.时间复杂度为两个log. 标记的更新方式比较奇特,空间复杂度为N^2. 模板题目. [代码] #include <cstdio> # ...

  3. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  4. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  5. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  6. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  7. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  8. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  9. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

随机推荐

  1. caffe convert mxnet

    https://github.com/apache/incubator-mxnet/tree/430ea7bfbbda67d993996d81c7fd44d3a20ef846/tools/caffe_ ...

  2. Oracle 差异性增量 和 累计增量 原理(转)

    RMAN一个强大的功能是支持增量备份,增量备份中心思想就是减少备份的数据量,我们不需要在从头开始备份了,只需要备份自上次已备份之后的数据块即可.   Oracle 9i 共有五种级别 0 1 2 3 ...

  3. Python基础—09-文件操作

    文件操作 目录管理(os) system:执行系统命令 # 清空屏幕 # os.system('cls') # 弹出计算器程序 os.system('calc') name:查看系统名称 nt:win ...

  4. 对TCP三次握手四次分手还不清楚,超简单解析

      关于TCP三次握手四次分手,之前看资料解释的都很笼统,很多地方都不是很明白,所以很难记,前几天看的一个博客豁然开朗,可惜现在找不到了.现在把之前的疑惑总结起来,方便一下大家. 先上个TCP三次握手 ...

  5. 不再手写import - VSCode自动引入Vue组件和Js模块

    :first-child{margin-top:0!important}.markdown-body>:last-child{margin-bottom:0!important}.markdow ...

  6. eclipse 突然debug模式不能正常运行了

    eclipse 突然debug模式不能正常运行了,但非debug模式却能正常运行.debug模式不能正常启动的现象描述如下:    点击eclipse debug按钮,console窗口显示tomca ...

  7. 在CentOS 7上搭建Docker环境

      Preface       We commonly use VMware or VirtualBox to install our Virtual Machines before.For the ...

  8. php mysql 计算经纬之间距离 范围内筛选

    <?php /** * 根据经纬度和半径计算出范围 * @param string $lat 纬度 * @param String $lng 经度 * @param float $radius ...

  9. idea中注解配置一对多,多对一,双向多对一映射(不详细)

    一对多 package cn.pojo; import javax.persistence.*; import java.io.Serializable; import java.util.Set; ...

  10. com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Unknown column

    com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Unknown column …… 出现这个异常的很大可能性是 数据库是没有问题的 ...