原文:http://budairenqin.iteye.com/blog/2215899

这篇分析一下accept的细节, 我觉得网络IO相关开发很多时候不能仅仅局限于java层, 尤其从accept开始一个连接诞生了, 什么拥塞控制啊, 滑动窗口啊等等一系列底层的问题可能就开始会渐渐困扰到你了, 这一章尝试先从linux内核的tcp实现开始分析accept

源码来自linux-2.6.11.12, 还参考了[TCP_IP.Architecture,.Design.and.Implementation.in.Linux]一书

accept概述

accept属于tcp被动打开环节(被动打开请参考tcp状态变迁图), 被动打开的前提是你这一端listen, listen时创建了一个监听套接字, 专门负责监听, 不负责传输数据.

当一个SYN到达服务器时, linux内核并不会创建sock结构体, 只是创建一个轻量级的request_sock结构体,里面能唯一确定是哪一个客户端发来的SYN的信息.

接着服务端发送SYN + ACK给客户端, 总结下来是两个步骤:

    1.建立request_sock

    2.回复SYN + ACK

接着客户端需要回复ACK, 此时服务端从ACK这个包中取出相应信息去查找之前相同客户端发过来的SYN时候创建的request_sock结构体, 到这里内核才会为这条连接创建真正的重量级sock结构体.

但是sock还只是socket的子集(socket结构体中有一个指针sock * sk), 此时一条连接至少还需要绑定一个fd(文件描述符)才能传输数据, accept系统调用后将绑定一个fd.

accept流程图:

1.tcp_v4_rcv()是传输层报文处理入口, 主要做以下事情:
    a)从报文中获取TCP头部数据, 验证TCP首部检验和

    b)根据TCP首部中的信息来设置TCP控制块中的值,这里要进行字节序的转换

    c)接着会调用__tcp_v4_lookup()

2.__tcp_v4_lookup()用来查找传输控制块sk, 如果未找到则直接给对端发RST(我们java层常看到的connection reset by peer就是RST导致, 很多情况下会给对端发送RST,找不到sk只是RST众多导火索中的一个).

3.接着检查第二步中找到的传输控制块sk, 如果进程没有访问sk, 会接着调用tcp_v4_do_rcv()来正常接收, tcp_v4_do_rcv()是传输层处理TCP段的主入口

4.如果sk->sk_state == TCP_LISTEN, 代表是监听套接字, 则应该处理被动连接(注意下accept的连接就是被动连接)

5.sock *nsk = tcp_v4_hnd_req(sk, skb);

    tcp_v4_hnd_req()处理半连接状态的ACK消息, 这里分两种情况:

        1)tcp_v4_hnd_req()直接返回了nsk并且nsk == sk(这代表现在是第一次握手), 此时沿着上图左边虚线框里的路径继续往下执行.

       
2)tcp_v4_hnd_req()里面调用tcp_v4_search_req()根据TCP四元组(源端口、源地址、目的地址)在父传输控制块的散列表中查找相应的连接请求块,
那说明两次握手已完成, 直接调用tcp_check_req()进行三次握手确认.

        此时沿着右边虚线框执行.

**一.先分析左边第一条链路, 也就是处理SYN**

    a)首先是tcp_rcv_state_process(), 除了ESTABLISHED和TIME_WAIT状态外,其他状态下的TCP段处理都由这个函数实现. 如果是处理SYN, 它会调用tcp_v4_conn_request()来处理.

    b)tcp_v4_conn_request()函数里会做如下检查:

        1)SYN queue是不是满了? 如果满了并且没有启用syncookie功能, 则直接丢弃连接

        2)accept queue是不是满了?如果满了并且SYN请求队列中至少有一个握手过程中没有重传,则丢弃

    c)通过了b)中的检查, 说明可以接收并处理请求, 调用tcp_openreq_alloc()先分配一个请求块.

    d)接着调用tcp_parse_options()解析TCP段中的选项

    e)然后初始化好连接请求块后就可以调用tcp_v4_send_synack()像客户端发送SYN + ACK了

    f)最后调用tcp_v4_synq_add()将这个sk加入SYN queue中.

最后注意下其实sk只是一个轻量级的request_sock, 毕竟sock结构体比request_sock大的多, 犯不着三次握手都没建立起来我就建立一个大的结构体.

现在一个sock已经进入SYN queue, 目前的阶段是握手的第二步, 收到SYN并且回复对端SYN + ACK(希望你记得上一章我们讲backlog时提到过的两个队列, SYN queue就是其中一个)

**二.接下来第二条链路, 右边的虚线框**

    a) tcp_v4_search_req()通过TCP四元组查到了对应的请求块, 说明两次握手已经完成, 进行第三次握手确认, 也就是处理ACK.

    b)如果检查第三次握手的ACK段是有效的, 则调用tcp_v4_syn_recv_sock()创建子传输控制块.

    c)tcp_v4_syn_recv_sock()方法里有很多初始化操作

        1)创建子传输控制块,并进行初始化(这里是真正的重量级sock了)

        2)设置路由缓存,确定输出网络接口的特性

        3)根据路由中的路径MTU信息,设置控制块MSS

        4)与本地端口进行绑定

        最后会返回一个真正的重量级sock(注意区别前边提到的sk == request_sock)

    d)接着调用tcp_synq_unlink()将sk从SYN queue中移除, 告别半连接身份

    e)现在通过tcp_acceptq_queue()把这个重量级的sock加入的accept queue, 到此这个TCP连接已经可以被我们的应用层netty拿去玩了.

好吧, 我知道上面的文字中很多东西没有详细展开, 只关注java层的同学可能看着稍微吃力, 下面贴上两个图, 一个tcp三路握手, 一个tcp状态变迁图

第一个图来自耗子叔的[TCP那些事]http://coolshell.cn/articles/11564.html, 三次握手过程

第二个图在网上随便搜的, 来源不清楚了, 不过最终的源头肯定是[TCP/IP详解]一书了, 这是一个TCP状态变迁图,
我们上面分析的accept过程属于被动打开, 可以仔细对照图看一下.图中所有的TCP状态这里不解释了, 篇幅控制不住了,
大家参照[TCP/IP详解]一书.

现在铺垫完了, 开始分析netty的accept过程. 又要拿出第一章(EventLoop)的代码了, 多路复用IO的dispatch:

private static void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
// ......
try {
int readyOps = k.readyOps();
// Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
// to a spin loop
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
if (!ch.isOpen()) {
// Connection already closed - no need to handle write.
return;
}
}
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
// Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
ch.unsafe().forceFlush();
}
if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
// remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
// See https://github.com/netty/netty/issues/924
int ops = k.interestOps();
ops &= ~SelectionKey.OP_CONNECT;
k.interestOps(ops); unsafe.finishConnect();
}
} catch (CancelledKeyException ignored) {
unsafe.close(unsafe.voidPromise());
}
}

以后分析read, write等逻辑是都要从这个代码开始, 现在我们只关心OP_ACCEPT, 由前两章的分析我们知道, 这里调用的是NioMessageUnsafe#read()

    public void read() {
// ......
final int maxMessagesPerRead = config.getMaxMessagesPerRead();
final ChannelPipeline pipeline = pipeline();
boolean closed = false;
Throwable exception = null;
try {
try {
for (;;) {
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
} // stop reading and remove op
if (!config.isAutoRead()) {
break;
} if (readBuf.size() >= maxMessagesPerRead) {
break;
}
}
} catch (Throwable t) {
exception = t;
}
setReadPending(false);
int size = readBuf.size();
for (int i = 0; i < size; i ++) {
pipeline.fireChannelRead(readBuf.get(i));
} readBuf.clear();
pipeline.fireChannelReadComplete(); if (exception != null) {
if (exception instanceof IOException && !(exception instanceof PortUnreachableException)) {
closed = !(AbstractNioMessageChannel.this instanceof ServerChannel);
}
pipeline.fireExceptionCaught(exception);
}
if (closed) {
if (isOpen()) {
close(voidPromise());
}
}
} finally {
if (!config.isAutoRead() && !isReadPending()) {
removeReadOp();
}
}
}
}

1. maxMessagesPerRead的默认值在NioMessageUnsafe中为16, 尽可能的一次多accept些连接, 在os层我们提到了accept queue会满, 所以应用层越早拿走accept queue中的连接越好.

2. 接下来重头戏是doReadMessages

protected int doReadMessages(List<Object> buf) throws Exception {
SocketChannel ch = javaChannel().accept();
try {
if (ch != null) {
buf.add(new NioSocketChannel(this, ch));
return 1;
}
} catch (Throwable ignored) {}
return 0;
}

a)javaChannel().accept()会通过accept系统调用从os的accept queue中拿出一个连接并包装成SocketChannel

    b)接着又包装一层netty的NioSocketChannel之后放进buf中.

    c)NioSocketChannel构造方法将SocketChannel感兴趣的事件设置成OP_READ, 并设置成非阻塞模式.

3. 我们回到unsafe#read()方法, 如果每次调用doReadMessages都能拿到一个channel, 那么一直拿到16个以上的channel再跳出循环, 原因在第一点中已经说了.
    如果localRead == 0, 表示此时os 的 accept queue中可能已经没有就绪连接了, 所以也跳出循环.

4. 接下来触发channelRead event:

    pipeline.fireChannelRead(readBuf.get(i));

    channelRead是inbound event, 回想之前pipeline中的顺序(head-->
ServerBootstrapAcceptor-->tail),
会调用ServerBootstrapAcceptor的channelRead()

public void channelRead(ChannelHandlerContext ctx, Object msg) {
final Channel child = (Channel) msg; child.pipeline().addLast(childHandler); // 设置child options, attrs try {
childGroup.register(child).addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (!future.isSuccess()) {
forceClose(child, future.cause());
}
}
});
} catch (Throwable t) {
forceClose(child, t);
}
}

前两篇开篇实例有如下代码:

b.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch) throws Exception {
ChannelPipeline p = ch.pipeline();
p.addLast(new EchoServerHandler());
}
});

1.child.pipeline().addLast(childHandler)就是将这里我们自己用户逻辑相关的handler加入到 channel 的pipeline里面(注意这是worker的pipeline, 前面提到的都是boss 的 pipeline)

2.设置child options, attrs

3.接下里从workerGroup中拿出一个workerEventLoop并将channel注册到其中, register()的逻辑和第二篇讲bind时bossEventLoop的注册基本是一样的, 这里我们不再重复讲了.

到这里, 一次accept流程, 就完成了, 现在这个channel就有workerEventLoop来处理读写等事件了.

Netty源码细节-accept、read(Linux os层 + Netty层代码细节)(转)的更多相关文章

  1. 编译Netty源码遇到的一些问题-缺少io.netty.util.collection包

    缺少包和java类 下载好Netty的源码后,导入到IDE,运行自带的example时编译不通过. 如下图,是因为io.netty.util.collection的包没有 点进去看,确实没有这个包 发 ...

  2. Netty 源码 Channel(二)主要类

    Netty 源码 Channel(二)主要类 Netty 系列目录(https://www.cnblogs.com/binarylei/p/10117436.html) 一.Channel 类图 二. ...

  3. Netty 源码 Channel(一)概述

    Netty 源码 Channel(一)概述 Netty 系列目录(https://www.cnblogs.com/binarylei/p/10117436.html) Channel 为 Netty ...

  4. Netty 源码 NioEventLoop(三)执行流程

    Netty 源码 NioEventLoop(三)执行流程 Netty 系列目录(https://www.cnblogs.com/binarylei/p/10117436.html) 上文提到在启动 N ...

  5. Netty 源码(二)NioEventLoop 之 Channel 注册

    Netty 源码(二)NioEventLoop 之 Channel 注册 Netty 系列目录(https://www.cnblogs.com/binarylei/p/10117436.html) 一 ...

  6. Netty 源码 NioEventLoop(一)初始化

    Netty 源码 NioEventLoop(一)初始化 Netty 系列目录(https://www.cnblogs.com/binarylei/p/10117436.html) Netty 基于事件 ...

  7. netty源码分析之二:accept请求

    我在前面说过了server的启动,差不多可以看到netty nio主要的东西包括了:nioEventLoop,nioMessageUnsafe,channelPipeline,channelHandl ...

  8. Netty源码阅读(一) ServerBootstrap启动

    Netty源码阅读(一) ServerBootstrap启动 转自我的Github Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速 ...

  9. Netty源码—一、server启动(1)

    Netty作为一个Java生态中的网络组件有着举足轻重的位置,各种开源中间件都使用Netty进行网络通信,比如Dubbo.RocketMQ.可以说Netty是对Java NIO的封装,比如ByteBu ...

  10. Netty源码分析--Reactor模型(二)

    这一节和我一起开始正式的去研究Netty源码.在研究之前,我想先介绍一下Reactor模型. 我先分享两篇文献,大家可以自行下载学习.  链接:https://pan.baidu.com/s/1Uty ...

随机推荐

  1. python unittest 快速入门

    import unittest def add(x, y): return x + y class TestLearning(unittest.TestCase): def setUp(self): ...

  2. OleDbDataAdapter具体使用11

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  3. MYSQL使用外键进行优化

    #转载请联系 假如你是京东的数据库管理员,你现在管理着这样一个数据库. mysql> select * from goods; +----+--------------------------- ...

  4. Selenium2+python自动化40-cookie相关操作【转载】

    前言 虽然cookie相关操作在平常ui自动化中用得少,偶尔也会用到,比如登录有图形验证码,可以通过绕过验证码方式,添加cookie方法登录. 登录后换账号登录时候,也可作为后置条件去删除cookie ...

  5. 只有5行代码的算法——Floyd算法

    Floyd算法用于求一个带权有向图(Wighted Directed Graph)的任意两点距离的算法,运用了动态规划的思想,算法的时间复杂度为O(n^3).具体方法是:设点i到点j的距离为d[i][ ...

  6. Go语言,用原子函数atomic避免资源竞争

    下一步应该是互斥锁了. package main import ( "fmt" "runtime" "sync" "sync/at ...

  7. 配置虚拟主机 和 打war包

    配置一台虚拟主机?        在[tomcat]/conf/server.xml文件中的<Engine>标签内部添加一个<Host>标签:            <H ...

  8. 洛谷 P2415 集合求和【数学公式/模拟】

    给定一个集合s(集合元素数量<=30),求出此集合所有子集元素之和. 输入输出格式 输入格式: 集合中的元素(元素<=1000) 输出格式: 和 输入输出样例 输入样例#1: 2 3 输出 ...

  9. HDU 多校1.10

  10. Maven / Nexus 的用法和经验

    Maven / Nexus 的用法和经验