ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667
这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t。
发现t是一个递推式,t(n) = c*t(n-1)+t(n-2)+b。这样的话就可以使用矩阵快速幂进行计算了。
设列矩阵[t(n), t(n-1), 1],它可以由[t(n-1), t(n-2), 1]乘上一个3*3的矩阵得到这个矩阵为:{[c, 1, b], [1, 0, 0], [0, 0, 1]},这样指数部分就可以矩阵快速幂了。
但是如果指数不模的话,计算肯定爆了,这里需要考虑费马小定理,a^(p-1) = 1(mod p),于是指数就可以模(p-1)了。
最后算出指数后,再来一次快速幂即可。
但是打这场BC的时候,我并没有考虑到a%p = 0的情况。。。最终错失这题,只过了三题。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <vector>
#include <string>
#define LL long long using namespace std; //矩阵乘法
//方阵
#define maxN 4
struct Mat
{
LL val[maxN][maxN], p;
int len; Mat()
{
len = ;
} Mat operator=(const Mat& a)
{
len = a.len;
p = a.p;
for (int i = ; i < len; ++i)
for (int j = ; j < len; ++j)
val[i][j] = a.val[i][j];
return *this;
} Mat operator*(const Mat& a)
{
Mat x;
x.p = a.p;
memset(x.val, , sizeof(x.val));
for (int i = ; i < len; ++i)
for (int j = ; j < len; ++j)
for (int k = ; k < len; ++k)
if (val[i][k] && a.val[k][j])
x.val[i][j] = (x.val[i][j] + val[i][k]*a.val[k][j]%p)%p;
return x;
} Mat operator^(const LL& a)
{
LL n = a;
Mat x, p = *this;
memset(x.val, , sizeof(x.val));
x.p = this->p;
for (int i = ; i < len; ++i)
x.val[i][i] = ;
while (n)
{
if (n & )
x = x * p;
p = p * p;
n >>= ;
}
return x;
}
}from, mat; LL n, a, b, c, p; //快速幂m^n
LL quickPow(LL x, LL n)
{
LL a = ;
while (n)
{
a *= n& ? x : ;
a %= p;
n >>= ;
x *= x;
x %= p;
}
return a;
} void work()
{
if (a%p == )
{
if (n == ) printf("1\n");
else printf("0\n");
return;
}
LL t, ans;
if (n == )
t = ;
else if (n == )
t = b%(p-);
else
{
memset(from.val, , sizeof(from.val));
from.val[][] = c;
from.val[][] = ;
from.val[][] = b;
from.val[][] = ;
from.val[][] = ;
from.len = ;
from.p = p-;
mat = from^(n-);
t = (mat.val[][]*b%(p-)+mat.val[][])%(p-);
}
ans = quickPow(a, t);
cout << ans << endl;
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
cin >> n >> a >> b >> c >> p;
work();
}
return ;
}
ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)的更多相关文章
- ACM学习历程—HDU5490 Simple Matrix (数学 && 逆元 && 快速幂) (2015合肥网赛07)
Problem Description As we know, sequence in the form of an=a1+(n−1)d is called arithmetic progressio ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 矩阵乘法快速幂 codevs 1250 Fibonacci数列
codevs 1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1 ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)
We consider problems concerning the number of ways in which a number can be written as a sum. If the ...
- 矩阵乘法快速幂 cojs 1717. 数学序列
矩阵乘法模板: #define N 801 #include<iostream> using namespace std; #include<cstdio> int a[N][ ...
- codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
随机推荐
- grep命令详细解析 --非原创 原作者ggjucheng
简介 grep (global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它 ...
- Yii2 高级模板 多域名管理问题
现在在网站中有这种情况,比如有一个 http://frontend.com/tv 需要根据判断用户的 User Agent ,如果用户是手机浏览器的话,则跳转到 http://mobile.com/t ...
- iOS UIFont 的学习与使用
通常,我们使用字体 都是系统默认的字体. 有时候 从阅读体验,美观度 设计师都会考虑用一些 更高大尚的字体. 系统字体库 给英文 各种style的发挥空间很大,但是 中文则不然. 但是苹果 给使用中文 ...
- 【HackerRank】Median
题目链接:Median 做了整整一天T_T 尝试了各种方法: 首先看了解答,可以用multiset,但是发现java不支持: 然后想起来用堆,这个基本思想其实很巧妙的,就是维护一个最大堆和最小堆,最大 ...
- Ubuntu16.04下编译android6.0源码
http://blog.csdn.net/cnliwy/article/details/52189349 作为一名合格的android开发人员,怎么能不会编译android源码呢!一定要来一次说编译就 ...
- tomcat8配置tomcat-users.xml不生效
一般想进入tomcat管理后台,只要在tomcat-users.xml配置文件中添加一下内容即可 <role rolename="manager-gui"/> < ...
- poj 1961 Period 【KMP-next前缀数组的应用】
题目地址:http://poj.org/problem?id=1961 Sample Input 3 aaa 12 aabaabaabaab 0 Sample Output Test case #1 ...
- different between web api and web service
https://stackoverflow.com/questions/19336347/what-is-the-difference-between-a-web-api-and-a-web-ser ...
- 增强织梦DedeCMS“更新系统缓存”清理沉余缓存的功能
我们使用织梦DedeCMS系统有很长一段时间后,不间断的在后台更新系统缓存的时候,有些缓存文件夹及缓存文件没有被清理,导致日积月累的垃圾缓存文件越来越多,可以以百千万计算,现在增强更新系统缓存功能清理 ...
- Phoenix表和索引分区数对插入和查询性能的影响
1. 概述 1.1 HBase概述 HBase由master节点和region server节点组成.在100-105集群上,100和101是master节点,102-105是region serve ...