SHOI 2007 仙人掌图(BZOJ 1023)
1023: [SHOI2008]cactus仙人掌图
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 2564 Solved: 1062
Description
如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌
图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。
举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6
,5,4)、(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两
个的简单回路里。另外,第三张图也不是仙人图,因为它并不是连通图。显然,仙人图上的每条边,或者是这张仙
人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图上两点之间的距离为这两点之间最
短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1
,你的任务是求出给定的仙人图的直径。
Input
输入的第一行包括两个整数n和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶
点将从1到n编号。接下来一共有m行。代表m条路径。每行的开始有一个整数k(2≤k≤1000),代表在这条路径上
的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边
。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们
保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。
Output
只需输出一个数,这个数表示仙人图的直径长度。
Sample Input
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
5 2 14 9 15 10 8
10 1
10 1 2 3 4 5 6 7 8 9 10
Sample Output
9
HINT
对第一个样例的说明:如图,6号点和12号点的最短路径长度为8,所以这张图的直径为8。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define N 2222222
int head[N],to[N],next[N];
int n,m,tot,cnt,ans;
int dis[N],cir[N];
int dfn[N],low[N],visx,fa[N];
inline void Add_Edge(int u,int v){to[cnt]=v;next[cnt]=head[u];head[u]=cnt++;}
struct Data{
int p,w;
}q[N];
inline void read(){
memset(head,-,sizeof head );
scanf("%d%d",&n,&m);
for(int i=,a,b,c;i<=m;i++){
scanf("%d%d",&a,&b);
for(int j=;j<=a;j++){
scanf("%d",&c);
Add_Edge(b,c);Add_Edge(c,b);b=c;
}
}
}
inline void GetCircle(){
int h=,t=;
for(int i=;i<=tot;i++) cir[tot+i]=cir[i];//展链成环
for(int i=;i<=(tot<<);i++){
while(h<t&&i-q[h].p>(tot>>)) h++;
while(h<t&&q[t].w<=dis[cir[i]]-i) t--;
q[++t].p=i; q[t].w=dis[cir[i]]-i;
ans=max(ans,dis[cir[i]]+i+q[h].w);
}
}
inline void DFS(int u){
low[u]=dfn[u];
for(int i=head[u];~i;i=next[i]){
int v=to[i];
if(fa[v]!=&&v!=fa[u]) low[u]=min(low[u],dfn[v]);
if(fa[v]==){
fa[v]=u; dfn[v]=dfn[u]+; DFS(v);
low[u]=min(low[u],low[v]);
}
}
for(int i=head[u];~i;i=next[i]){
int v=to[i];
if(fa[v]==u&&low[v]>dfn[u]){//Bridge
ans=max(ans,dis[v]++dis[u]);
dis[u]=max(dis[u],dis[v]+);
}
if(fa[v]!=u&&dfn[u]<dfn[v]){//Circle
tot=;
while(v!=fa[u]) cir[++tot]=v,v=fa[v];//cir暂时存储环上的点
GetCircle();//接着处理环上的点
for(int j=;j<tot;j++)
dis[u]=max(dis[u],dis[cir[j]]+min(j,tot-j));
}
}
}
inline void Solve(){
fa[]=-;
DFS();
cout<<ans<<endl;
}
int main(){
read();
Solve();
return ;
}
SHOI 2007 仙人掌图(BZOJ 1023)的更多相关文章
- 1023: [SHOI2008]cactus仙人掌图 - BZOJ
Description如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路 ...
- 【BZOJ】【1023】【SHOI2008】cactus仙人掌图
DP+单调队列/仙人掌 题解:http://hzwer.com/4645.html->http://z55250825.blog.163.com/blog/static/150230809201 ...
- bzoj 1023: [SHOI2008]cactus仙人掌图 tarjan缩环&&环上单调队列
1023: [SHOI2008]cactus仙人掌图 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1141 Solved: 435[Submit][ ...
- BZOJ 1023 仙人掌图
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...
- [BZOJ]1023 cactus仙人掌图(SHOI2008)
NOIP后的第一次更新嗯. Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在 ...
- 【刷题】BZOJ 1023 [SHOI2008]cactus仙人掌图
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...
- 【BZOJ】1023: [SHOI2008]cactus仙人掌图 静态仙人掌(DFS树)
[题意]给定仙人掌图(每条边至多在一个简单环上),求直径(最长的点对最短路径).n<=50000,m<=10^7. [算法]DFS树处理仙人掌 [题解]参考:仙人掌相关问题的处理方法(未完 ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
- bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图
http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...
随机推荐
- php杂记——1(基础知识与文件读写)
1.变量前面需要加美元符号"$",常量则不需要: define('PRICE',100); echo PRICE; 2.用一个变量的值作为另一个变量的名称可以得到类似C中的指针变量 ...
- Python 3基础教程29-os模块
本文介绍os模块,主要是介绍一些文件的相关操作. 你还有其他方法去查看os 1. help() 然后输入os 2. Python接口文档,前面提到的用浏览器打开的,os文件路径为:C:\Users\A ...
- fiddler之弱网测试
今天就说一下如何使用fiddler做弱网测试 1.首先要把手机的代理打开,这就不多讲了哈,不懂得话请点传送门:https://www.cnblogs.com/fuxinxin/p/9146693.ht ...
- Django数据模型--字段详解
一.字段 1.CharField: 字段数据类型为字符串 class Test(models.Model): test = models.CharField(max_length=) 2.Intege ...
- python 基础篇 06 编码 以及小知识点补充
本节主要内容: 1. is和==的区别2. 编码的问题 ⼀. is和==的区别1. id()通过id()我们可以查看到⼀个变量表⽰的值在内存中的地址 注 ----<<<在pytho ...
- python第一天(安装运行python)
1. 安装Python 3.7 目前,Python有两个版本,一个是2.x版,一个是3.x版,这两个版本是不兼容的.由于3.x版越来越普及,我们的教程将以最新的Python 3.7版本为基础.请确保你 ...
- APP与智能手表是如何通信的【本文摘抄自深圳尚锐科技】
APP与智能手表是如何通信的 1. Android 与服务器的通信方式主要有两种,一种是http 通信 ,一种是socket 通信. 两者的最大差异在于,http连接使用的是“请求—响应方式”,即在请 ...
- BZOJ4327 JSOI2012玄武密码(AC自动机)
当然可以在SA上二分答案,但看起来会被卡log.考虑对模板串建出AC自动机,用母串在上面跑,标记上所有能到达的点.注意到达某个点时需要标记所有其通过fail指针可以走到的点,如果遇到一个标记过的点就可 ...
- JSP语法,运行机理等
JSP是几年前就接触了,但是用归用,很多实际的意义含义等还是不太明白,借此机会,梳理一下. 1.JSP运行原理:当浏览器web应用服务器请求一个JSP页面时,Web应用服务器将其转换成一个Servle ...
- [洛谷P1892]团伙
题目大意:有n个人,关系为:朋友的朋友是朋友,敌人的敌人是朋友.如果是朋友就在一个团队内,是敌人就不在,现在给出一关系,问最多有多少团伙.题解:并查集,建反集,如果是朋友,就把他们的并查集合并:如果是 ...