【Foreign】石子游戏 [博弈论]
石子游戏
Time Limit: 10 Sec Memory Limit: 256 MB
Description
Input
Output
输出T行,表示每组的答案。
Sample Input
3
1
1
2
1
0 0
3
1 2 2
4 4 4 4
Sample Output
0
6
HINT
Solution
这显然是一道博弈论的题目。我们发现这是一个树结构,仔细看了一下,发现这显然是一个阶梯Nim的模型。
我们将所有和同n奇偶的值XOR起来就可以得到SG。我们先判断一下,若SG=0则显然必败,否则必胜。
然后我们开始计算方案,枚举每一个节点,目标显然就是要让SG=0。
由于XOR的消去率,根据题意,可以分 2 种情况分别讨论:(根据SG异或值判断是加入还是取出。)
1. 从父亲那加入值,显然就是需要 ( SG^a[这个点] ) - a[这个点的父亲] <= a[这个点],这样才可以通过加入若干个值使得SG=0;
2. 把值给儿子,显然需要 (SG^a[这个点]) <= a[这个点],这样才可以通过拿走若干的值使得SG=0。
然后我们讨论一下是否为叶子节点:
1. 非叶节点,若从父亲那加入值只有1的贡献,把值给儿子(由于有两个儿子)所以贡献为2;
2. 叶子节点,从父亲那加入值或者彻底删去都显然只有1的贡献。
这样就可以求出方案数了。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE = ;
const int INF = ;
const int MOD = 1e9+; int T;
int n;
int x,num;
int a[][];
int SG,Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Solve()
{
n=get();
SG=Ans=;
for(int i=;i<=n;i++)
for(int j=;j<=(<<(i-));j++)
{
a[i][j]=get();
if(i%==n%) SG ^= a[i][j];
}
if(!SG) {printf(""); return;} for(int i=;i<=n;i++)
{
for(int j=;j<=(<<(i-));j++)
if(i%==n%)
{
if(i!=n)
{
if( (SG^a[i][j]) <= a[i][j]) Ans+=;
if( (SG^a[i][j]) > a[i][j] && (SG^a[i][j]) - a[i-][(j-)/+] <= a[i][j]) Ans+=;
}
if(i==n)
{
if( (SG^a[i][j]) <= a[i][j] ) Ans++;
if( (SG^a[i][j]) > a[i][j] && (SG^a[i][j]) - a[i-][(j-)/+] <= a[i][j] ) Ans++;
}
}
} printf("%d",Ans);
} int main()
{
T=get();
while(T--)
Solve(),printf("\n");
}
【Foreign】石子游戏 [博弈论]的更多相关文章
- POJ.1067 取石子游戏 (博弈论 威佐夫博弈)
POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
- Day1T1仓鼠的石子游戏——博弈论
打比赛的时候还没学博弈论,打完下来花了半个多小时学完,发现这题就是一道\(SG\)函数 其实当时差一点就\(YY\)出了答案,但是后面太难想,所以没整出来 机房大佬们都说自己没学博弈论,但是都AC 题 ...
- hdu 2516 取石子游戏 博弈论
很显然的nim游戏的变形,很好找规律 先手败:2,3,5,8,13…… 其他先手胜.即满足菲波拉数列. 代码如下: #include<iostream> #include<stdio ...
- 【GZOI2015】石子游戏 博弈论 SG函数
题目大意 有\(n\)堆石子,两个人可以轮流取石子.每次可以选择一堆石子,做出下列的其中一点操作: 1.移去整堆石子 2.设石子堆中有\(x\)个石子,取出\(y\)堆石子,其中\(1\leq y&l ...
- HDU.2516.取石子游戏(博弈论 Fibonacci Nim)
题目链接 \(Description\) 1堆石子有n个.两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍,取完者胜.问谁能赢. \(Solution ...
- 洛谷$P$2252 取石子游戏 博弈论
正解:博弈论 解题报告: 传送门! 威佐夫博弈板子昂$QwQ$ 关于这一类问题也有个结论,是说,先手必败的状态一定形如$(\left \lfloor i+\phi \right \rfloor,\le ...
- hdu 2177 取(2堆)石子游戏 博弈论
由于要输出方案,变得复杂了.数据不是很大,首先打表,所有whthoff 的奇异局势. 然后直接判断是否为必胜局面. 如果必胜,首先判断能否直接同时相减得到.这里不需要遍历或者二分查找.由于两者同时减去 ...
- 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)
[BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...
随机推荐
- linux shell中读写操作mysql数据库
本文介绍了如何在shell中读写mysql数据库.主要介绍了如何在shell 中连接mysql数据库,如何在shell中创建数据库,创建表,插入csv文件,读取mysql数据库,导出mysql数据库为 ...
- vs编译报错 BLOCK_TYPE_IS_VALID(pHead->nBlockUse)
1.重复释放内存导致,new delete和malloc free两个组合分配的堆空间都不能重复释放两次: 2.用delete或者free释放栈空间导致内存空间被破坏(栈空间内存的头部有系统写入的一些 ...
- js数字格式化千分位格式
带小数点的 var a = 8462948.2453; console.log(a.toLocaleString()) //8,462,948.245 不带小数点的 num.toString().re ...
- 给socks-proxy-agent增加认证
由于需要使用socks代理,查看了nodejs的各种socks库,最终的结论是socks库是其中最完善的,而socks-proxy-agent是以其为基础的封装,可以直接和http模块对接. 不过在尝 ...
- 使用IDEA快速搭建Gradle项目
- Python-学习-import语句导入模块
简单的学习一下调用外部的模块文件. 在Python中,模块是一种组织形式,它将彼此有关系的Pyrhon 代码组织到一个个独立的文件当中,模块可以包含可执行代码,函数,和类或者是这些东西的组合. 当我们 ...
- 12.0 Excel表格读取
Pycharm安装 xlrd 首先在xuexi目录下创建一个ExcelFile文件,让后在ExcelFile下创建一个Excel表格 创建表格时记得把单元格的格式设置为[文本] 我们设置为文本之后,存 ...
- Elasticsearch中的DocValues
Elasticsearch最近一段时间非常火,以致于背后的公司都改名为Elastic了,因为Elasticsearch已经不仅限于搜索,反而更多的用在大数据分析场景,所以在公司品牌上开始“去Searc ...
- kill命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/wangcp-2014/p/5146343.html 1.命令格式: kill[参数][进程号] 2.命令功能: 发送指 ...
- 简单java采集程序一
[目标任务]通过该网站采集全国的手机号码段至数据库表中 [完成过程] 1.初涉正则表达式,学会写简单的正则表达式 2.获取单个网页内容,学会java中基本的IO流 3.将获取数据插入mysql数据库表 ...