[CF494D]Birthday
题意:给一棵带边权的树,定义如下的一些东西
$S(x)$表示以$x$为根的子树中的节点组成的集合
$d(u,v)$表示$u$和$v$之间的距离
$f(u,v)\sum\limits_{x\in S(v)}d(u,x)^2-\sum\limits_{x\notin S(v)}d(u,x)^2$
多次询问求$f(u,v)$的值,对$10^9+7$取模至非负数
非常妙的树D!这个题啊,excited!
首先它涉及到了子树,我们当然要先dfs一次求出$dsum_i=\sum\limits_{x\in S(i)}d(i,x)$,$dsum2_i=\sum\limits_{x\in S(i)}d(i,x)^2$,子树大小$siz_i$和每个节点到根的距离$dis_i$
这个转移比较简单,设$son(x)$表示$x$的儿子组成的集合
考虑从$son(i)$转移到$i$,(以下均有$x\in son(i)$)
$\begin{align*}dsum_i&=\sum\limits_{x\in S(i),x\ne i}d(x,i)\\&=\sum\limits_{x\in S(i),x\ne i}d(x,k)+d(k,i)\\&=\sum\limits_{k\in son(i)}\left(dsum_k+siz_k\cdot d(k,i)\right)\end{align*}$
$\begin{align*}dsum2_i&=\sum\limits_{x\in S(i),x\ne i}d(i,x)^2\\&=\sum\limits_{x\in S(i),x\ne i}(d(x,k)+d(k,i))^2\\&=\sum\limits_{x\in S(i),x\ne i}(d(x,k)^2+2\cdot d(x,k)\cdot d(k,i)+d(k,i)^2)\\&=\sum\limits_{k\in son(i)}\left(dsum2_k+2\cdot d(k,i)\cdot dsum_k+siz_k\cdot d(k,i)^2\right)\end{align*}$
下一步,因为询问涉及到全局,所以我们要再dfs一次求出$alld_i=\sum\limits_{1\leq j\leq n}d(i,j)$,$alld2_i=\sum\limits_{1\leq j\leq n}d(i,j)^2$
因为题目钦定了说明了$1$是根,所以$alld_1=dsum_1,alld2_1=dsum2_1$
考虑从$i$转移到$son(i)$,(以下均有$x\in son(i)$)
$\begin{align*}alld_x&=\sum\limits_{j\in S(x)}d(x,j)+\sum\limits_{j\notin S(x)}d(x,j)\\&=\sum\limits_{j\in S(x)}\left(d(i,j)-d(x,i)\right)+\sum\limits_{j\notin S(x)}\left(d(i,j)+d(x,i)\right)\\&=alld_i-siz_x\cdot d(x,i)+(n-siz_x)\cdot d(x,i)\\&=alld_i+(n-2\cdot siz_x)\cdot d(x,i)\end{align*}$
$\begin{align*}alld2_x&=\sum\limits_{j\in S(x)}d(x,j)^2+\sum\limits_{j\notin S(x)}d(x,j)^2\\&=\sum\limits_{j\in S(x)}(d(i,j)-d(x,i))^2+\sum\limits_{j\notin S(x)}(d(i,j)+d(x,i))^2\\&=\sum\limits_{j\in S(x)}(d(i,j)^2-2\cdot d(i,j)\cdot d(x,i)+d(x,i)^2)+\sum\limits_{j\notin S(x)}(d(i,j)^2+2\cdot d(i,j)\cdot d(x,i)+d(x,i)^2)\\&=alld2_i-2\cdot d(x,i)\cdot(\sum\limits_{j\in S(x)}d(i,j)-\sum\limits_{j\notin S(x)}d(i,j))+n\cdot d(x,i)^2\\&=alld2_i+n\cdot d(x,i)^2-2\cdot d(x,i)\cdot(\sum\limits_{j\in S(x)}d(i,j)-(alld_i-\sum\limits_{j\in S(x)}d(i,j)))\\&=alld2_i+n\cdot d(x,i)^2-2\cdot d(x,i)\cdot(2(dsum_x+siz_x\cdot d(x,i))-alld_i)\end{align*}$
预处理出这些东西之后,看一看如何计算答案
首先当然要求一下lca,直接上倍增
#1若$u\notin S(v)$($lca(u,v)\ne v$)
$\sum\limits_{x\notin S(v)}d(u,x)^2=alld2_u-\sum\limits_{x\in S(v)}d(u,x)^2$
$\begin{align*}\sum\limits_{x\in S(v)}d(u,x)^2&=\sum\limits_{x\in S(v)}(d(u,v)+d(v,x))^2\\&=siz_v\cdot d(u,v)^2+2\cdot d(u,v)\cdot\sum\limits_{x\in S(v)}d(v,x)+\sum\limits_{x\in S(v)}d(v,x)^2\\&=siz_v\cdot d(u,v)^2+2\cdot d(u,v)\cdot dsum_v+dsum2_v\end{align*}$
#2若$u\in S(v)$($lca(u,v)=v$)
$\begin{align*}\sum\limits_{x\notin S(v)}d(u,x)^2&=\sum\limits_{x\notin S(v)}(d(u,v)+d(v,x))^2\\&=(n-siz_v)\cdot d(u,v)^2+2\cdot d(u,v)\cdot\sum\limits_{x\notin S(v)}d(v,x)+\sum\limits_{x\notin S(v)}d(v,x)^2\\&=(n-siz_v)\cdot d(u,v)^2+2\cdot d(u,v)\cdot(alld_v-dsum_v)+alld2_v-dsum2_v\end{align*}$
然后就ok啦,写转移真是烧脑啊
#include<stdio.h> #define mod 1000000007ll #define ll long long ll mo(ll x){return x%mod;} struct edge{ int to,nex; ll v; }e[200010]; ll dsum[100010],dsum2[100010],alld[100010],alld2[100010],siz[100010],dis[100010]; int h[100010],fa[100010][17],dep[100010],tot,n; void add(int a,int b,ll c){ tot++; e[tot].to=b; e[tot].v=c; e[tot].nex=h[a]; h[a]=tot; } void dfs(int x){ siz[x]=1; for(int i=h[x];i;i=e[i].nex){ if(e[i].to!=fa[x][0]){ dis[e[i].to]=mo(dis[x]+e[i].v); fa[e[i].to][0]=x; dep[e[i].to]=dep[x]+1; dfs(e[i].to); siz[x]+=siz[e[i].to]; dsum[x]=mo(dsum[x]+dsum[e[i].to]+siz[e[i].to]*e[i].v); dsum2[x]=mo(dsum2[x]+mo(e[i].v*e[i].v)*siz[e[i].to]+2ll*e[i].v*dsum[e[i].to]+dsum2[e[i].to]); } } } void dfs2(int x){ for(int i=h[x];i;i=e[i].nex){ if(e[i].to!=fa[x][0]){ alld[e[i].to]=mo(alld[x]+(n-2ll*siz[e[i].to])*e[i].v); alld2[e[i].to]=mo(alld2[x]+2ll*e[i].v*mo(alld[x]-2ll*dsum[e[i].to]-siz[e[i].to]*e[i].v)+(n-2ll*siz[e[i].to])*mo(e[i].v*e[i].v)); dfs2(e[i].to); } } } void swap(int&a,int&b){ int c=a; a=b; b=c; } int lca(int x,int y){ if(dep[x]<dep[y])swap(x,y); int i; for(i=16;i>=0;i--){ if(dep[fa[x][i]]>=dep[y])x=fa[x][i]; } if(x==y)return x; for(i=16;i>=0;i--){ if(fa[x][i]!=fa[y][i]){ x=fa[x][i]; y=fa[y][i]; } } return fa[x][0]; } int main(){ int q,i,j,u,v,uv; ll w; scanf("%d",&n); for(i=1;i<n;i++){ scanf("%d%d%I64d",&u,&v,&w); add(u,v,w); add(v,u,w); } dep[1]=1; dfs(1); alld[1]=dsum[1]; alld2[1]=dsum2[1]; dfs2(1); for(j=1;j<17;j++){ for(i=1;i<=n;i++)fa[i][j]=fa[fa[i][j-1]][j-1]; } scanf("%d",&q); while(q--){ scanf("%d%d",&u,&v); uv=lca(u,v); if(uv==v){ w=mo(dis[u]-dis[v]); w=mo((n-siz[v])*mo(w*w)+2ll*w*(alld[v]-dsum[v])+alld2[v]-dsum2[v]); w=mo(alld2[u]-2ll*w); }else{ w=mo(dis[u]+dis[v]-2ll*dis[uv]); w=mo(siz[v]*mo(w*w)+2ll*w*dsum[v]+dsum2[v]); w=mo(2ll*w-alld2[u]); } printf("%I64d\n",mo(w+mod)); } }
[CF494D]Birthday的更多相关文章
随机推荐
- The 13th Zhejiang Provincial Collegiate Programming Contest - I
People Counting Time Limit: 2 Seconds Memory Limit: 65536 KB In a BG (dinner gathering) for ZJU ...
- 使用eclipse插件创建一个web project
使用eclipse插件创建一个web project 首先创建一个Maven的Project如下图 我们勾选上Create a simple project (不使用骨架) 这里的Packing 选择 ...
- canvas知识01
本文转自:http://www.cnblogs.com/jsdarkhorse/archive/2012/06/29/2568451.html 更多参考:http://www.cnblogs.com/ ...
- Python基础(8)迭代器、生成器
一 什么是迭代 1 重复 2 下一次重复是基于上一次的结果 # while True: # cmd=input('>>: ') # print(cmd) # l=['a','b','c', ...
- C++中的垃圾回收和内存管理
最开始的时候看到了许式伟的内存管理变革系列,看到性能测试结果的时候,觉得这个实现很不错,没有深入研究其实现.现在想把这个用到自己的一个项目中来,在linux下编译存在一些问题,所以打算深入研究一下. ...
- spring自定义参数绑定(日期格式转换)
spring参数绑定时可能出现 BindException(参数绑定异常),类似下面的日期绑定异常(前台传过来是String类型,实际的pojo是Date类型) default message [Fa ...
- cdp协议通信并发编程基础之进程
一 . 基于UDP的套接字 udp是无链接的所以先启动哪一段都不会报错 udp服务端 import socket server=socket.socket(socket.AF_INET,socket. ...
- ZOJ1003 Crashing Balloon
Crashing Balloon Time Limit: 2 Seconds Memory Limit: 65536 KB On every June 1st, the Children's ...
- C++类学习
一.C++类的定义 C++中使用关键字 class 来定义类, 其基本形式如下:class 类名{ public: //行为或属性 protected: //行为或属性 private: / ...
- linux===linux在线模拟器汇总
jslinux: http://bellard.org/jslinux/ 一个叫Fabrice Bellard的工程师使用 JavaScript 在浏览器上模拟出了一个 Linux 系统.没有图形化界 ...