Link:

BZOJ 2817 传送门

Solution:

算是比较神的DP了吧,

首先这个绝对值处理起来很难受,肯定要想办法去掉

于是想到从小到大插入的方式,便不存在绝对值的问题

插入一个数只有5种情况,我们来分类讨论:

1.插入以后它两边都没有数。(权值$-2*i$,方案数$k+1-l$)

2.插入以后它两边都有数。(权值$2*i$,方案数$k-1$)

3.插入以后它的一边有数。(权值$0$,方案数$k*2-l$)

4.插入在边界上,且它旁边没有数。(权值$-i$,方案数$2-l$)

5.插入在边界上,且它旁边有数。(权值$i$,方案数$2-l$)

可以发现每种情况产生的权值都可以确定,且方案数也可以确定,于是想到便能使用DP转移

设$f[i][j][k][l]$表示当前插入$i$个数,权值为$j$,序列被分为$k$段,序列两端状态为$l$时的方案数

$l$表示序列两端是有0/1/2个数

接下来就是巨恶心的高精度处理了:

手写高精度速度肯定是不够的,

于是只能用正式OI不给用的黑科技__float128了,(讲道理是不能用的,但不管A了就行)

一篇介绍的文章

能保留小数点后32位,整数位能表示到1e4392?超乎我的想象

(注意输出时要手动处理一下)

但这还不够,$k<=8$时还是TLE,

于是还要将输入分类,如果$k<=8$用double,否则才用__float128

学会使用Template和namespace来进行不同处理

Code:

#include <bits/stdc++.h>

using namespace std;
#define ll long long
#define RG register
const int M=4500; namespace db{double f[2][2*M+1][101][3];}
namespace f128{__float128 f[2][2*M+1][101][3];}
int n,m,k; template<class T> inline void print(T res)
{
printf("%d.",(int)res); //逐位输出
while(k--)
{
res=(res-(int)res)*10;
if(!k) res+=0.5;
printf("%d",(int)res);
}
} template<class T> inline void solve(T f[2][2*M+1][101][3])
{
f[1][M-1][1][1]=2;f[1][M-2][1][0]=1;f[0][M][1][2]=1;
for(RG int i=2,cur=0,pre=1;i<=n;++i,pre=cur,cur^=1)
{
memset(f[cur],0,sizeof(f[cur]));
for(RG int j=0;j<=2*M;++j)
for(RG int k=1;k<=n-1;++k)
for(RG int l=0;l<=2;++l)
{
if(!f[pre][j][k][l]) continue;
if(j+2*i<=2*M) f[cur][j+2*i][k-1][l]+=f[pre][j][k][l]*(k-1);
if(j>=2*i) f[cur][j-2*i][k+1][l]+=f[pre][j][k][l]*(k+1-l);
f[cur][j][k][l]+=f[pre][j][k][l]*(k*2-l);
if(l<2)
{
if(j+i<=2*M) f[cur][j+i][k][l+1]+=f[pre][j][k][l]*(2-l);
if(j>=i) f[cur][j-i][k+1][l+1]+=f[pre][j][k][l]*(2-l);
}
}
} T res=0;
for(RG int i=M+m;i<=2*M;++i) res+=f[n&1][i][1][2];
for(RG int i=2;i<=n;++i) res/=i;
print(res);
} int main()
{
cin >> n >> m >> k;
if(k<=8) solve(db::f);
else solve(f128::f);
return 0;
}

Review:

1、通过排序的预处理规避绝对值运算

2、DP时对边界条件加一个特殊状态

3、对__float128的使用(输出要特殊处理)

4、使用Template+namespace等方法提高代码重用性

[BZOJ 2817] 波浪的更多相关文章

  1. bzoj2817[ZJOI2012]波浪

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2817 波浪 [问题描述] 阿米巴和小强是好朋友. 阿米巴和小强在大海旁边看海水的波涛.小 ...

  2. 【BZOJ2817】[ZJOI2012]波浪(动态规划)

    [BZOJ2817][ZJOI2012]波浪(动态规划) 题面 BZOJ 洛谷 题解 首先这个差值最大也就是\(n^2\)级别的. 那么这样子就可以压进状态啦. 我们把这个操作看成一个个加数的操作,按 ...

  3. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  4. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  5. HTML5 Canvas玩转酷炫大波浪进度图

    如上图所见,本文就是要实现上面那种效果. 由于最近AlloyTouch要写一个下拉刷新的酷炫loading效果.所以首选大波浪进度图. 首先要封装一下大波浪图片进度组件.基本的原理是利用Canvas绘 ...

  6. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  7. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  8. bzoj 4610 Ceiling Functi

    bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...

  9. BZOJ 题目整理

    bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...

随机推荐

  1. strings用法小记

    By francis_hao    Feb 14,2017 打印文件中可打印字符,每个序列至少四(可配置)个字符长.主要用于显示非文本文件 概述   选项解释 -a --all - 扫描整个文件,不管 ...

  2. nginx,docker反向代理

    1. [root@javanginx ~]# cat /etc/nginx/nginx.conf user root root;worker_processes 4;error_log /var/lo ...

  3. fuser命令找到占用资源的进程

    fuser 概述 fuser命令是用来显示所有正在使用着指定的file, file system 或者 sockets的进程信息. 例一: #fuser –m –u /mnt/usb1 /mnt/us ...

  4. 在线输入RGB更改背景色

    HTML: <!DOCTYPE html><html> <head> <meta http-equiv="Content-Type" co ...

  5. php 计算两个日期的间隔天数

    使用php内部自带函数实现 1.使用DateTime::diff 实现计算 参考阅读>>PHP DateTime::diff() 上代码: <?php $start = " ...

  6. 代码管理工具 (含git、npm、gulp)

    1 Git 分布式代码管理工具(基于Linux,可在本地进行提交)代码同时储存在本地和服务器中 ① Git基本操作命令 (1)初始化,创建初始化仓库 git init ------- 文件初始化,初始 ...

  7. 【bzoj4310/hdu5030-跳蚤】后缀数组

    我真的是..调了一百年.. 傻逼的人生.. 而且这题好像可以用sam做哎!我Y出了一个奇怪的办法.. 好吧sam是不能做这题的.搞错了. 说说后缀数组好了.. 搞后缀数组 然后我们要二分一个子串,判断 ...

  8. [Codevs1519]过路费解题报告|最小生成树|LCA

    在某个遥远的国家里,有 n个城市.编号为 1,2,3,…,n.这个国家的政府修建了m 条双向道路,每条道路连接着两个城市.政府规定从城市 S 到城市T需要收取的过路费为所经过城市之间道路长度的最大值. ...

  9. 在SDK中使用Ubuntu仿真器

    Ubuntu仿真器是开发过程中非常有用,尤其是在没有任何Ubuntu设备时.在将仿真器附加到SDK后,你便可以在上面运行程序,安装点击数据包,等等,类似在物理设备上的操作一样. 在这里,您可以了解如何 ...

  10. container_of分析--可用good【转】

    转自:http://blog.csdn.net/tigerjibo/article/details/8299589 版权声明:本文为博主原创文章,未经博主允许不得转载. 1.container_of宏 ...