【莫比乌斯反演+分块】BZOJ1101-[POI2007]Zap
【题目大意】
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。
【思路】
前面的思路同HDU1695
不过不同的是这道题中(a,b)和(b,a)算作同一种情况,不需要再减去重复的情况。
这道题运用了分块加快效率。我们可以注意到是相同的,b'(b'/i)b表示和当前商相同的最后一位[b'/d],d'(d'/i)同理,pos为两者中较小的一个。我们预处理Miu的前缀和,就可以将一样的*(sum[pos]-pos[k-1])即可!
??BZOJ一定要用printf%lld,cout会RE??
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN=+;
const int INF=0x7ffffff;
int a,b,d;
int miu[MAXN];
int miu_sum[MAXN]; void get_miu(int maxn)
{
int prime[MAXN],pnum=;
memset(miu_sum,,sizeof(miu_sum));
miu[]=miu_sum[]=;
for (int i=;i<maxn;i++) miu[i]=-INF;
for (int i=;i<maxn;i++)
{
if (miu[i]==-INF)
{
miu[i]=-;
prime[++pnum]=i;
}
for (int j=;j<=pnum;j++)
{
if (i*prime[j]>=maxn) break;
if (i%prime[j]==) miu[i*prime[j]]=;
else miu[i*prime[j]]=-miu[i];
}
miu_sum[i]=miu_sum[i-]+miu[i];
}
} ll get_ans(int a,int b,int d)
{
int ub=min(a,b),pos;
ll ans=;
for (int i=;i<=ub;i=pos+)
{
pos=min(a/(a/i),b/(b/i));
ans+=(ll)(miu_sum[pos]-miu_sum[i-])*(a/i)*(b/i);
}
return ans;
} int main()
{
int T;
scanf("%d",&T);
get_miu(MAXN-);
for (int i=;i<T;i++)
{
scanf("%d%d%d",&a,&b,&d);
a/=d;b/=d;
printf("%lld\n",get_ans(a,b,d));
}
}
【莫比乌斯反演+分块】BZOJ1101-[POI2007]Zap的更多相关文章
- 【莫比乌斯反演】BZOJ1101 [POI2007]zap
Description 回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b.T, a, b<=4e5. Solution 显然对于gcd=d的,应该把a/d b/d,然 ...
- 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)
先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...
- BZOJ1101 POI2007 Zap 【莫比乌斯反演】
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- bzoj2301(莫比乌斯反演+分块)
传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
随机推荐
- Codeforces Round #348 (VK Cup 2016 Round 2, Div. 2 Edition) B
B. Little Artem and Grasshopper time limit per test 2 seconds memory limit per test 256 megabytes in ...
- xcode 10 出现 :-1: Multiple commands produce '/Users/.../Library/Developer/Xcode/DerivedData/.../Build/Products/Dev-iphonesimulator/TLYShyNavBar/TLYShyNavBar.framework/Info.plist': 1) Target 'TLYShyNavB
错误提示如下: :-1: Multiple commands produce '/Users/.../Library/Developer/Xcode/DerivedData/.../Build/Pro ...
- ByteUtil 工具类
ByteUtil 工具类 import java.io.FileOutputStream; import java.io.OutputStream; import java.nio.charset.C ...
- 斯特林数(Stirling number)
在组合数学,Stirling 数可指两类数,第一类Stirling 数和第二类 Stirling 数,都是由18世纪数学家 James Stirling 提出的. Stirling 数有两种,第一类和 ...
- Sass、Ruby、Nodejs、gulp
1.Sass文件就是普通的文本文件,不过其文件后缀名有两种,一种为“.sass”:另一种为“.scss”.我们一般用“.scss”就好,至于这两种文件扩展名的区别在于“.sass”是Sass语言文件的 ...
- jetty bleed漏洞利用工具
两个exp: https://github.com/AppSecConsulting/Pentest-Tools/blob/master/jetty-bleed.py https://github.c ...
- Codeforces Round #475 Div. 2 A B C D
A - Splits 题意 将一个正整数拆分成若干个正整数的和,从大到小排下来,与第一个数字相同的数字的个数为这个拆分的权重. 问\(n\)的所有拆分的不同权重可能个数. 思路 全拆成1,然后每次将2 ...
- express 4.x+ swig
Express 是一个基于 Node.js 平台的极简.灵活的 web 应用开发框架,它提供一系列强大的特性,帮助你创建各种 Web 和移动设备应用. express官网:http://www.exp ...
- Centos 7.2 双网卡绑定之踩坑
线上服务器,安装centos7.2 x64最小化安装,需要做链路聚合,双网卡绑定.在centos 6.x 和 centos 7上测试都OK,于是直接开搞. 说明下,以下环境是在虚拟机中实现的: 系统: ...
- SPOJ - AMR11H
Array Diversity Time Limit: 404MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Submi ...