hdu5076
好题,首先观察可得w[i][j]选择只有可能两种,一种比阀值大,一种比阀值小
比阀值大就一定选满足条件最大的w,比阀值小同样一定选满足条件最大的w
那么一个最小割模型就呼之欲出了,注意w可能是负数那么就集体+1025;
我们把这两种情况分辨记作w[i][mx[i]],w[i][mi[i]]
下面是建图,观察两个byte产生收益是or条件似乎不好处理
但仔细观察连边条件可以发现,二进制只有1位不同意味着byte编号一定可以构成一个二分图
于是,对于二进制所含1的个数为奇数的i,连边(s,i,w[i][mi[i]]),(i,t,w[i][mx[i]]),而对二进制所含1的个数为偶数的数j则相反
额外收益即可表示为(i,j,u[i]^u[j])
那么最大分数=总分数-最小割-n*1025;
下面就是构造方案了,我一开始sb wa了很久
首先有的w[i]中不存在比阀值小的情况,那这些byte分配什么value是确定的
做完最小割后,我们从s沿残流网络做一遍dfs,如果s可以走到i,就意味着(s,i)的边可以不割,(i,t)的边要割
那么对应点如何选择也就出来了
#include<bits/stdc++.h> using namespace std;
struct way{int flow,po,next;} e[];
int p[],numh[],h[],cur[],pre[],d[],cl[],w[][],mx[],mi[],ans[],u[],b[];
bool v[];
int n,m,ln,lm,len,t;
const int lim=;
const int inf=; void add(int x,int y,int f)
{
e[++len].po=y;
e[len].flow=f;
e[len].next=p[x];
p[x]=len;
}
void build(int x, int y, int f)
{
add(x,y,f);
add(y,x,);
} int sap()
{
memset(h,,sizeof(h));
memset(numh,,sizeof(numh));
numh[]=t+;
for (int i=; i<=t; i++) cur[i]=p[i];
int j,u=,s=,neck=inf;
while (h[]<t+)
{
d[u]=neck;
bool ch=;
for (int i=cur[u]; i!=-; i=e[i].next)
{
j=e[i].po;
if (e[i].flow>&&h[u]==h[j]+)
{
neck=min(neck,e[i].flow);
cur[u]=i;
pre[j]=u; u=j;
if (u==t)
{
s+=neck;
while (u)
{
u=pre[u];
j=cur[u];
e[j].flow-=neck;
e[j^].flow+=neck;
}
neck=inf;
}
ch=;
break;
}
}
if (ch)
{
if (--numh[h[u]]==) return s;
int q=-,tmp=t;
for (int i=p[u]; i!=-; i=e[i].next)
{
j=e[i].po;
if (e[i].flow&&h[j]<tmp)
{
tmp=h[j];
q=i;
}
}
cur[u]=q; h[u]=tmp+;
numh[h[u]]++;
if (u)
{
u=pre[u];
neck=d[u];
}
}
}
return s;
} bool dfs(int x)
{
v[x]=;
for (int i=p[x]; i>-; i=e[i].next)
{
int y=e[i].po;
if (!e[i].flow) continue;
if (!v[y]) dfs(y);
}
} int main()
{
int cas;
scanf("%d",&cas);
for (int i=; i<; i++)
{
for (int j=; j< ;j++)
cl[i]^=(i>>j)&;
}
while (cas--)
{
scanf("%d%d",&ln,&lm);
n=<<ln; m=<<lm;
len=-; memset(p,,sizeof(p));
memset(ans,,sizeof(ans));
for (int i=; i<=n; i++) scanf("%d",&b[i]);
for (int i=; i<=n; i++) scanf("%d",&u[i]);
for (int i=; i<=n; i++)
{
mi[i]=mx[i]=;
w[i][]=-lim; b[i]++;
for (int j=; j<b[i]; j++)
{
scanf("%d",&w[i][j]);
if (w[i][mi[i]]<w[i][j]) mi[i]=j;
}
for (int j=b[i]; j<=m; j++)
{
scanf("%d",&w[i][j]);
if (w[i][mx[i]]<w[i][j]) mx[i]=j;
}
if (!mi[i]) ans[i]=mx[i];
}
t=n+;
for (int i=; i<n; i++)
if (cl[i])
{
for (int j=; j<ln; j++)
{
int y=i^(<<j);
build(i+,y+,u[i+]^u[y+]);
}
}
for (int i=; i<=n; i++)
if (cl[i-])
{
build(,i,w[i][mi[i]]+lim);
build(i,t,w[i][mx[i]]+lim);
}
else {
build(,i,w[i][mx[i]]+lim);
build(i,t,w[i][mi[i]]+lim);
}
sap();
memset(v,,sizeof(v));
dfs();
for (int i=p[]; i>-; i=e[i].next)
{
int x=e[i].po;
if (ans[x]) continue;
if ((v[x]&&cl[x-])||(!v[x]&&!cl[x-])) ans[x]=mi[x];
else ans[x]=mx[x];
}
for (int i=; i<=n; i++)
{
printf("%d",ans[i]-);
if (i!=n) printf(" "); else puts("");
}
}
}
hdu5076的更多相关文章
随机推荐
- codeforce580c (dfs)
题目意思:给你一棵树,然后每个叶子节点会有一家餐馆,你讨厌猫,就不会走有连续超过m个节点有猫的路,然后问你最多去几家饭店 思路:直接DFS Example Input 4 11 1 0 01 21 3 ...
- 关于aspnet_regsql使用方法
aspnet_regsql命令解释 说明该向导主要用于配置SQL Server数据库,如membership,profiles等信息,如果要配置SqlCacheDependency,则需要以命令行的方 ...
- 怎么获取textarea中选中文字
textarea设置select="saveSelectionText()" //保存选中内容 saveSelectionText: function () { var focus ...
- js & disabled mouse right button menus
js & disabled mouse right button menus 网页可以屏蔽 F12 https://www.cnblogs.com/Marydon20170307/p/9122 ...
- kibana和ElasticSearch的信息查询检索
使用kibana来进行ElasticSearch的信息查询检索 大家经常会听到使用ELK搭建日志管理平台.完成日志聚合检索的功能,那么这个平台到底是个什么概念,怎么搭建,怎么使用呢? ELK包括Ela ...
- 微服务日志监控与查询logstash + kafka + elasticsearch
使用 logstash + kafka + elasticsearch 实现日志监控 https://blog.csdn.net/github_39939645/article/details/788 ...
- BZOJ 3224 Tyvj 1728 普通平衡树 | Splay 板子+SPlay详细讲解
下面给出Splay的实现方法(复杂度证明什么的知道是 nlogn 就可以啦) 首先对于一颗可爱的二叉查找树,是不能保证最坏nlogn的复杂度(可以想象把一个升序序列插入) (二叉查找树保证左子树元素大 ...
- 图解WinXP局域网共享设置步骤
原文链接地址:http://blog.csdn.net/jackinzhou/article/details/8468208 第一章:共享的前提工作 1.更改不同的计算机名,设置相同的工作组! 2.我 ...
- Link Cat Tree (连喵树) 学习笔记
Link Cat Tree 一.感性定义 所谓连喵树,即一种对森林支持修改,查询,连边,删边等操作的数据结构(姑且算她是吧).她用一颗颗互相连接的辅助树维护原森林的信息,辅助树相互连接的边叫虚边,辅助 ...
- android脱壳之DexExtractor原理分析
导语: 上一篇我们分析android脱壳使用对dvmDexFileOpenPartial下断点的原理,使用这种方法脱壳的有2个缺点: 1. 需要动态调试 2. 对抗反调试方案 为了提高工作效率, ...