一、题面

POJ1430

二、分析

该题与之前做的八数码不同,它是一个2*4的棋盘,并且没有空的区域。这样考虑的情况是很少的,依然结合康托展开,这时康托展开最多也只乘7的阶乘,完全可以BFS先预处理一遍。

这里需要注意,在处理的时候,仔细读题,他的二维变一维的顺序是顺时针一遍读过来的。

预处理完后,这里需要用一个小技巧,就是置换。

$$ \begin{pmatrix} 3 & 2 & 1 & 4 & 5 & 6 & 7 & 8\\1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \end{pmatrix} $$

上面使用的例子是$32145678$,然后相当于把它移到了和$12345678$一个起跑线上,这样做的好处就是我们预处理的答案能够适用所有情况。

假设目标状态是$87654321$,这样把目标状态置换成与上面对应的即可。

$$ \begin{pmatrix} 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\\8 & 7 & 6 & 5 & 4 & 1 & 2 & 3 \\ \end{pmatrix} $$

这样就可以直接输出结果了。

三、AC代码

 #include <cstdio>
#include <iostream>
#include <fstream>
#include <cstring>
#include <queue>
#include <algorithm> using namespace std; const int MAXN = ;
const int fac[] = {, , , , , , , , , }; //factorial
bool visit[MAXN];
struct Node
{
int m[];
int cat;
};
char op[] = "ABC";
string ans[MAXN]; void A(Node &t)
{
std::reverse(t.m , t.m+);
} void B(Node &t)
{
int temp = t.m[];
for(int i = ; i > ; i--)
{
t.m[i] = t.m[i-];
}
t.m[] = temp;
temp = t.m[];
for(int i = ; i < ; i++)
{
t.m[i] = t.m[i+];
}
t.m[] = temp;
} void C(Node &t)
{
int temp = t.m[];
t.m[] = t.m[];
t.m[] = t.m[];
t.m[] = t.m[];
t.m[] = temp;
} int Cantor(int s[])
{
int t, ans = ;
for(int i = ; i < ; i++)
{
t = ;
for(int j = i+; j < ; j++)
{
if(s[j] < s[i])
t++;
}
ans += t*fac[-i];
}
return ans;
} void bfs()
{
memset(visit, , sizeof(visit));
Node t;
for(int i = ; i < ; i++)
t.m[i] = i+;
t.cat = Cantor(t.m);
queue<Node> Q;
ans[t.cat] = "";
visit[t.cat] = ;
Q.push(t);
while(!Q.empty())
{
Node p = Q.front();
Q.pop();
for(int i = ; i < ; i++)
{
t = p;
switch(i)
{
case : A(t);break;
case : B(t);break;
case : C(t);break;
}
t.cat = Cantor(t.m);
if( !visit[t.cat] )
{ ans[t.cat] = ans[p.cat]+op[i];
visit[t.cat] = ;
Q.push(t);
}
}
} } int main()
{
//freopen("input.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
char s[];
int a[] = {}, b[] = {};
bfs();
while(scanf("%s", s)!=EOF)
{
for(int i = ; i < ; i++)
{
a[s[i] - ''] = i+;
}
scanf("%s", s);
for(int i = ; i < ; i++)
{
b[i] = a[s[i] - ''];
}
cout << ans[Cantor(b)] << endl;
}
return ;
}

HDU_1430 魔板 【BFS+康托展开+置换】的更多相关文章

  1. HDU_1430——魔板,预处理,康托展开,置换,string类的+操作

    Problem Description 在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板.魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示.任一时刻魔板的状态可 ...

  2. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. hdu1430魔板(BFS+康托展开)

    做这题先看:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description 在魔方风靡全球之后不久,Rubik先 ...

  4. HDU 1430 魔板(康托展开+BFS+预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  5. HDU_1043 Eight 【逆向BFS + 康托展开 】【A* + 康托展开 】

    一.题目 http://acm.hdu.edu.cn/showproblem.php?pid=1043 二.两种方法 该题很明显,是一个八数码的问题,就是9宫格,里面有一个空格,外加1~8的数字,任意 ...

  6. 魔板 (bfs+康托展开)

    # 10027. 「一本通 1.4 例 2」魔板 [题目描述] Rubik 先生在发明了风靡全球魔方之后,又发明了它的二维版本--魔板.这是一张有 888 个大小相同的格子的魔板: 1 2 3 4 8 ...

  7. HDU - 1430 魔板 【BFS + 康托展开 + 哈希】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1430 思路 我刚开始 想到的 就是 康托展开 但是这个题目是 多组输入 即使用 康托展开 也是会T的 ...

  8. HDU1430;魔板(BFS+康托展开)

    传送门 题意 给出初始序列与终止序列,给出三种操作,问最少经过几次操作能使初始->终止,输出操作(字典序最小) 分析 字符串只有8个字符,使用康托展开. 1.BFS将所有序列从"123 ...

  9. hdu1430 魔板(康拓展开 bfs预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. Spring框架找不到 applicationContext.xml文件,可能是由于applicationContext.xml文件的路径没有放在根目录下造成的

    Spring框架找不到 applicationContext.xml文件,可能是由于applicationContext.xml文件的路径没有放在根目录下造成的

  2. BeanUtils简单应用

    <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http:// ...

  3. javascript DES加密

    研究联通wifi登陆中,发现了一个名为"encryption.js"的文件.这个文件一看即知是加密过的,首先自己尝试去手工解密,看到太烦琐了,忽然想到网上有js解密工具,遂决定用来 ...

  4. scrapy设置代理

    在爬取网站内容的时候,最常遇到的问题是:网站对IP有限制,会有防抓取功能,最好的办法就是IP轮换抓取(加代理) 下面来说一下Scrapy如何配置代理,进行抓取 1.在Scrapy工程下新建“middl ...

  5. SQL Server 时间类型转换函数

    cast ( expression as data_type(length))convert ( data_type (length), expression, style) //如果未指定 leng ...

  6. 处理iOS设备的屏幕旋转

    某些情况下,不强制的给用户唯一的屏幕角度给用户.这样用户可以旋转手机得到不同的视觉体验. 最简单的就是safari,横看竖看都可以. 这时需要捕捉用户的屏幕旋转事件并处理.很简单,才两步.比把大象装冰 ...

  7. xubuntu14.04LTS安装steam后运行的错误解决办法

    我在ubuntu14.10中没碰到过这个问题,但在xubuntu14.04LTS中碰到 Steam needs to install these additional packages: libgl1 ...

  8. 综合学生信息管理系统(JSP+JDBC)

    原创 通过JSP+JDBC制作一个简单的操作数据库中表信息的系统. 总体界面如下,一共有5个功能块. 功能一:列出全部学生 功能二:按条件查询学生 功能三:新添加学生 功能四:按条件删除学生 功能五: ...

  9. mysql5.6数据库双机热备、主从备份

    主题:mysql5.6数据库双机热备.主从备份 缘由: 在Web应用系统中,数据库性能是导致系统性能瓶颈最主要的原因之一.尤其是在大规模系统中,数据库集群已经成为必备的配置之一.集群的好处主要有:查询 ...

  10. MVC进阶篇(三)——model层数据验证

    前言 常常在想,姓名性别那些个验证,真的有必要每次遇到,每次写验证吗?好麻烦,于是学到MVC这里,发现MVC自带数据验证,这个东西着实是个好东西.我写了一个小demo,分享给大家. 内容 一个表单的提 ...