一、题面

POJ1430

二、分析

该题与之前做的八数码不同,它是一个2*4的棋盘,并且没有空的区域。这样考虑的情况是很少的,依然结合康托展开,这时康托展开最多也只乘7的阶乘,完全可以BFS先预处理一遍。

这里需要注意,在处理的时候,仔细读题,他的二维变一维的顺序是顺时针一遍读过来的。

预处理完后,这里需要用一个小技巧,就是置换。

$$ \begin{pmatrix} 3 & 2 & 1 & 4 & 5 & 6 & 7 & 8\\1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \end{pmatrix} $$

上面使用的例子是$32145678$,然后相当于把它移到了和$12345678$一个起跑线上,这样做的好处就是我们预处理的答案能够适用所有情况。

假设目标状态是$87654321$,这样把目标状态置换成与上面对应的即可。

$$ \begin{pmatrix} 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\\8 & 7 & 6 & 5 & 4 & 1 & 2 & 3 \\ \end{pmatrix} $$

这样就可以直接输出结果了。

三、AC代码

 #include <cstdio>
#include <iostream>
#include <fstream>
#include <cstring>
#include <queue>
#include <algorithm> using namespace std; const int MAXN = ;
const int fac[] = {, , , , , , , , , }; //factorial
bool visit[MAXN];
struct Node
{
int m[];
int cat;
};
char op[] = "ABC";
string ans[MAXN]; void A(Node &t)
{
std::reverse(t.m , t.m+);
} void B(Node &t)
{
int temp = t.m[];
for(int i = ; i > ; i--)
{
t.m[i] = t.m[i-];
}
t.m[] = temp;
temp = t.m[];
for(int i = ; i < ; i++)
{
t.m[i] = t.m[i+];
}
t.m[] = temp;
} void C(Node &t)
{
int temp = t.m[];
t.m[] = t.m[];
t.m[] = t.m[];
t.m[] = t.m[];
t.m[] = temp;
} int Cantor(int s[])
{
int t, ans = ;
for(int i = ; i < ; i++)
{
t = ;
for(int j = i+; j < ; j++)
{
if(s[j] < s[i])
t++;
}
ans += t*fac[-i];
}
return ans;
} void bfs()
{
memset(visit, , sizeof(visit));
Node t;
for(int i = ; i < ; i++)
t.m[i] = i+;
t.cat = Cantor(t.m);
queue<Node> Q;
ans[t.cat] = "";
visit[t.cat] = ;
Q.push(t);
while(!Q.empty())
{
Node p = Q.front();
Q.pop();
for(int i = ; i < ; i++)
{
t = p;
switch(i)
{
case : A(t);break;
case : B(t);break;
case : C(t);break;
}
t.cat = Cantor(t.m);
if( !visit[t.cat] )
{ ans[t.cat] = ans[p.cat]+op[i];
visit[t.cat] = ;
Q.push(t);
}
}
} } int main()
{
//freopen("input.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
char s[];
int a[] = {}, b[] = {};
bfs();
while(scanf("%s", s)!=EOF)
{
for(int i = ; i < ; i++)
{
a[s[i] - ''] = i+;
}
scanf("%s", s);
for(int i = ; i < ; i++)
{
b[i] = a[s[i] - ''];
}
cout << ans[Cantor(b)] << endl;
}
return ;
}

HDU_1430 魔板 【BFS+康托展开+置换】的更多相关文章

  1. HDU_1430——魔板,预处理,康托展开,置换,string类的+操作

    Problem Description 在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板.魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示.任一时刻魔板的状态可 ...

  2. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. hdu1430魔板(BFS+康托展开)

    做这题先看:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description 在魔方风靡全球之后不久,Rubik先 ...

  4. HDU 1430 魔板(康托展开+BFS+预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  5. HDU_1043 Eight 【逆向BFS + 康托展开 】【A* + 康托展开 】

    一.题目 http://acm.hdu.edu.cn/showproblem.php?pid=1043 二.两种方法 该题很明显,是一个八数码的问题,就是9宫格,里面有一个空格,外加1~8的数字,任意 ...

  6. 魔板 (bfs+康托展开)

    # 10027. 「一本通 1.4 例 2」魔板 [题目描述] Rubik 先生在发明了风靡全球魔方之后,又发明了它的二维版本--魔板.这是一张有 888 个大小相同的格子的魔板: 1 2 3 4 8 ...

  7. HDU - 1430 魔板 【BFS + 康托展开 + 哈希】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1430 思路 我刚开始 想到的 就是 康托展开 但是这个题目是 多组输入 即使用 康托展开 也是会T的 ...

  8. HDU1430;魔板(BFS+康托展开)

    传送门 题意 给出初始序列与终止序列,给出三种操作,问最少经过几次操作能使初始->终止,输出操作(字典序最小) 分析 字符串只有8个字符,使用康托展开. 1.BFS将所有序列从"123 ...

  9. hdu1430 魔板(康拓展开 bfs预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. Linux tmux

    一.简介 Tmux是一个用于终端复用的软件,它允许一个用户在一个终端窗口或远程终端会话中使用多个不同的终端会话.在同一个命令行接口处理多个程序,以及将程序从已经开始运行另外的程序的Unix shell ...

  2. javascript总结2: Date对象

    1 Date 对象 Date 对象用于处理日期与时间. Date()的方法很多,这里只总结工作必备的方法! 2 常用方法 创建个 Date 对象:const mydate=new Date(); &l ...

  3. yum 安装telnet

    检测是否安装 rpm -qa |grep telnet 安装 yum install xinetd yum install telnet-server yum -y install telnet 再次 ...

  4. 第20章-使用JMX管理Spring Bean

    Spring对DI的支持是通过在应用中配置bean属性,这是一种非常不错的方法.不过,一旦应用已经部署并且正在运行,单独使用DI并不能帮助我们改变应用的配置.假设我们希望深入了解正在运行的应用并要在运 ...

  5. Java web 三层架构 模拟图

  6. MongoDB整理笔记の高级查询

    1.条件操作符 <, <=, >, >= 这个操作符就不用多解释了,最常用也是最简单的    db.collection.find({ "field" : ...

  7. Header Only Library

    什么是Header Only Library Header Only Library把一个库的内容完全写在头文件中,不带任何cpp文件. 这是一个巧合,决不是C++的原始设计. 第一次这么做估计是ST ...

  8. HttpServletResponse函數

    一.負責向客戶端發送數據的方法 1.ServletOutStream getOutputStream() 获得一个Servlet字节流输出数据 案例: response.setHeader(" ...

  9. .net core .NET Core与.NET Framework、Mono之间的关系

    .NET Core与.NET Framework.Mono之间的关系 首先想要知道.NET Core与.NET Framework.Mono之间的关系,就必须他们分别是什么,有什么用途? 一. .ne ...

  10. stream.fail() eof() EOF

    ifstream infile("student.dat"); while((c=infile.get())!=EOF){}    //EOF的值是-1 但在 #include&l ...