Description

一个长度为 \(n\) 的序列,初始都为 \(0\),你需要求出一个长度为 \(n-1\) 的排列 \(P\), 按照 \(1\) 到 \(n\) 的顺序,每次把 \(P_i\) 和 \(P_i+1\) 染成 \(1\),一个排列的价值为所有的位置都变成 \(1\) 的操作次数,求所有排列的价值和

题面

Solution

我们求出价值为 \(\lceil\frac{n}{2}\rceil\) 到 \(n-1\) 的排列的方案数,然后分别算贡献就行了

操作最多 \(i\) 次的方案数是 \(f[i]\)

恰好 \(i\) 次的方案就是 \(f[i]-f[i-1]\)

而 \(f[i]=C_{i-1}^{n-1-i}\)

具体含义:可以看作是每次可以选择 \(+1,+2\) ,求构成 \(n-2\) 的方案数,我们先默认都 \(+1\),剩下就是选择 \(+0,+1\) 了,只要总共的 \(i-1\) 次操作中有 \(n-1-i\) 个选择了 \(+1\),就一定可以达到目标了

#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=1e6+10,mod=1e9+7;
int Fac[N],inv[N],n,f[N];
inline int C(int n,int m){
return 1ll*Fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n;
int ans=0,li=(n+1)/2;
Fac[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;i++)Fac[i]=1ll*Fac[i-1]*i%mod;
for(int i=2;i<=n;i++)inv[i]=(mod-1ll*(mod/i)*inv[mod%i]%mod)%mod;
for(int i=2;i<=n;i++)inv[i]=1ll*inv[i]*inv[i-1]%mod;
for(int i=li;i<n;i++)f[i]=1ll*C(i-1,n-1-i)*Fac[i]%mod*Fac[n-1-i]%mod;
for(int i=n-1;i>=li;i--)f[i]=(f[i]-f[i-1]+mod)%mod;
for(int i=n-1;i>=li;i--)ans=(ans+1ll*i*f[i])%mod;
cout<<ans<<endl;
return 0;
}

AtCoder Grand Contest 023 C - Painting Machines的更多相关文章

  1. AtCoder Grand Contest 023 A - Zero-Sum Ranges

    Time limit : 2sec / Memory limit : 256MB Score : 200 points Problem Statement We have an integer seq ...

  2. Atcoder Grand Contest 023 E - Inversions(线段树+扫描线)

    洛谷题面传送门 & Atcoder 题面传送门 毒瘤 jxd 作业-- 首先我们不能直接对所有排列计算贡献对吧,这样复杂度肯定吃不消,因此我们考虑对每两个位置 \(x,y(x<y)\), ...

  3. AtCoder Grand Contest 023 E - Inversions

    Description 给出长度为 \(n\) 序列 \(A_i\),求出所有长度为 \(n\) 的排列 \(P\),满足 \(P_i<=A_i\),求所有满足条件的 \(P\) 的逆序对数之和 ...

  4. AtCoder Grand Contest 023 F - 01 on Tree

    Description 题面 Solution HNOI-day2-t2 复制上去,删点东西,即可 \(AC\) #include<bits/stdc++.h> using namespa ...

  5. Atcoder Grand Contest 023

    A 略 B 略 C(计数) 题意: 有n个白球排成一行,故有n-1个空隙,我可以给一个空隙对应的两个白球都涂黑.n-1个空隙的一个排列就对应着一个涂黑顺序,定义这个涂黑顺序的价值是“将所有n个球都涂黑 ...

  6. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  7. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  8. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  9. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

随机推荐

  1. Nginx开发HTTP模块入门

    Nginx开发HTTP模块入门 我们以一个最简单的Hello World模块为例,学习Nginx的模块编写.假设我们的模块在nginx配置文件中的指令名称为hello_world,那我们就可以在ngi ...

  2. Java高质量代码之 — 泛型与反射

    在Java5后推出了泛型,使我们在编译期间操作集合或类时更加的安全,更方便代码的阅读,而让身为编译性语言的Java提供动态性的反射技术,更是在框架开发中大行其道,从而让Java活起来,下面看一下在使用 ...

  3. docker容器管理及网络管理

    防火墙规则—— INPUT 主要用于主机防火墙,设置规则屏蔽处理进入本机的数据包示例:禁止10.180.100.141这个机器访问我本机的web服务iptables -t filter -A INPU ...

  4. JavaWeb应用中初始化Log4j的两种方式

    本文主要介绍了普通JavaWeb应用(基于Tomcat)中初始化Log4j的两种方式: 1.通过增加 InitServlet ,设置令其自启动来初始化 Log4j . 2.通过监听器 ServletC ...

  5. Python里面的负号的各种神奇用法?来填坑啦

    1.x.reshape(-1,2) x = np.linspace(1,10,10) x.reshape(-1,2) reshape(-1,2)里-1的应该是不管多少行,按两列算,行数自动算出.同理, ...

  6. Python之路迭代器协议、for循环机制、三元运算、列表解析式、生成器

    Python之路迭代器协议.for循环机制.三元运算.列表解析式.生成器 一.迭代器协议 a迭代的含义 迭代器即迭代的工具,那什么是迭代呢? #迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的 ...

  7. 二分查找法C语言实现

    [问题描述] 生成一个随机数组A[64] ,在数组中查找是否存在某个数num. [答案] #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> ...

  8. linux上的那些查找的命令

    由于工作的需要,少不得要在linux系统上查找各种各样的文件,关于在linux查找的命令有不少,这里小小的总结下. 简单介绍下各个命令的用途: find:实际搜索硬盘查询文件名称: whereis:查 ...

  9. 【问题记录】在执行js的时候报错:missing ) after argument list

    在执行个js语句时候报错: 报错语句: js('document.querySelector("[class] [tabindex='0']:nth-child(2) span") ...

  10. P2050 [NOI2012]美食节(费用流)

    P2050 [NOI2012]美食节 P2053 [SCOI2007]修车的加强版 因为数据较大,一次性把所有边都加完会T 于是我们每次只连需要的边跑费用流 就是开始先连所有厨师做倒数第1道菜 跑费用 ...