~~~题解~~~

题解:

  观察题面可以很快发现这是一棵基环内向树(然而并没有什么用。。。)

  再稍微思考一下,假设将这个环中的任意一点设为root,然后去掉root到下面的特殊边(即构成环的那条边),那么就构成了一棵树,并且可以用简单树形DP解决。

  再考虑加上这条边的限制,设被去掉的这条边是连接root 和 x的, 这条边实际上就是限制了在选root的时候不能选x,那么考虑一个暴力的想法。

  我们先在图中dfs,找到这个环,然后任意指定一点为root,再跑两边树形DP,一遍强制不选root,然后跑普通树形DP。另一遍强制选root,然后跑树形DP加上特判不能选x,最后两种答案取max即可。

  我这样写可能比较长,别人的做法只要写两遍dfs,我需要3遍(不过后面两个dfs可以复制粘贴)。但实际上是一个思路。别人的做法是dfs找到这个环,然后随便找条环上的边断开,然后强制这条边连接的两个点其中一个不选(其实就和我的写法一样的意思,只不过我是先把这两个点中的一个指定为了root)

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 1000100
#define ac 2000100
#define LL long long
int n, m, root;
int s[AC], p[AC], deep[AC];
LL f[AC][], g[AC][], ans;//存下每个点的厌恶对象以方便判断
int Head[AC], date[ac], Next[ac], tot;
bool z[AC], vis[AC], book[AC], flag; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} inline void add(int f, int w)
{
date[++tot] = w, Next[tot] = Head[f], Head[f] = tot;
date[++tot] = f, Next[tot] = Head[w], Head[w] = tot;
} void pre()
{
n = read();
for(R i = ; i <= n; i ++)
{
s[i] = read(), p[i] = read();
add(i, p[i]);
}
deep[] = ;
} void dfs1(int x)//找到反向边的那个点定为root
{
z[x] = true;
int now;
//if(root) return ;
for(R i = Head[x]; i; i = Next[i])
{
now = date[i];
if(z[now] && deep[now] + != deep[x]) root = x;
if(z[now] && p[now] == x && p[x] == now) root = x, flag = true;//特殊情况
//if(root) return ;
if(z[now]) continue;
deep[now] = deep[x] + ;
dfs1(now);
}
} void dfs2(int x)//强制选root
{
int now;
vis[x] = true;
f[x][] = s[x];//初始化
for(R i = Head[x]; i; i = Next[i])
{
now = date[i];
if(vis[now]) continue;
if(now == p[x] && x == root && !flag) continue;
dfs2(now);//忽略这条边,如果是特殊情况则不能忽略,因为是重边,一旦忽略将忽略2条
f[x][] += f[now][];
f[x][] += max(f[now][], f[now][]);
}
if(x == p[root]) f[x][] = f[x][];
} void dfs3(int x)//强制不选root
{
int now;
g[x][] = s[x];
book[x] = true;
for(R i = Head[x]; i; i = Next[i])
{
now = date[i];
if(book[now]) continue;
if(now == p[x] && x == root && !flag) continue;
dfs3(now);
g[x][] += g[now][];
g[x][] += max(g[now][], g[now][]);
}
} void work()
{
for(R i = ; i <= n; i ++)//因为本来就不一定联通,所以要跑多次
if(!z[i])
{
dfs1(i);
dfs2(root);
dfs3(root);
ans += max(f[root][], g[root][]);
}
printf("%lld\n", ans);
}
int main()
{
// freopen("in.in", "r", stdin);
pre();
work();
// fclose(stdin);
return ;
}

[ZJOI2008]骑士 DP dfs的更多相关文章

  1. BZOJ 1040: [ZJOI2008]骑士 [DP 环套树]

    传送门 题意:环套树的最大权独立集 一开始想处理出外向树树形$DP$然后找到环再做个环形$DP$ 然后看了看别人的题解其实只要断开环做两遍树形$DP$就行了...有道理! 注意不连通 然后洛谷时限再次 ...

  2. bzoj 1040: [ZJOI2008]骑士 環套樹DP

    1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1755  Solved: 690[Submit][Status] ...

  3. bzoj 1040: [ZJOI2008]骑士 树形dp

    题目链接 1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3054  Solved: 1162[Submit][S ...

  4. 【洛谷】2607: [ZJOI2008]骑士【树形DP】【基环树】

    P2607 [ZJOI2008]骑士 题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一 ...

  5. 【BZOJ1040】[ZJOI2008]骑士 树形DP

    [BZOJ1040][ZJOI2008]骑士 Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情 ...

  6. [ZJOI2008]骑士(基环树,树形dp)

    [ZJOI2008]骑士 题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的 ...

  7. BZOJ1040: [ZJOI2008]骑士(奇环树,DP)

    题目: 1040: [ZJOI2008]骑士 解析: 假设骑士\(u\)讨厌骑士\(v\),我们在\(u\),\(v\)之间连一条边,这样我们就得到了一个奇环树(奇环森林),既然是一颗奇环树,我们就先 ...

  8. 「树形DP」洛谷P2607 [ZJOI2008]骑士

    P2607 [ZJOI2008]骑士 题面: 题目描述 Z 国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的 ...

  9. ZJOI2008 骑士(树型DP)

    ZJOI2008 骑士 题目大意 给出n个人的战斗力和每个人讨厌的人,然后问最大能有多大的战斗力 solution 简单粗暴的题意,有一丢丢背包的感觉 那敢情就是DP了 有点像没有上司的舞会,,, 根 ...

随机推荐

  1. sql语句中#{}和${}的区别

    #---将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是111,那么解析成sql时的值为order by “111”, 如果传入的 ...

  2. python之打印九九乘法表

    配置环境:python 3.6 python编辑器:pycharm 整理成代码如下: #!/usr/bin/env python #-*- coding: utf-8 -*- #九九乘法表 #分析:九 ...

  3. python3 练习题100例 (二十四)打印完数

    完数:一个数如果恰好等于它的因子之和,这个数就称为"完数".例如 6 = 1+2+3. 题目内容: 输入一个正整数n(n<1000),输出1到n之间的所有完数(包括n). 输 ...

  4. python3 练习题100例 (二十二)输入两个字符串,输出两个字符串集合的并集

    题目内容: 输入两个字符串,输出两个字符串集合的并集. 为保证输出结果一致,请将集合内元素排序之后再输出, 如对于集合aset,可输出sorted(aset). 输入格式: 共两行,每一行为一个字符串 ...

  5. 记一次MD5妙用

    记一次MD5妙用 最近项目组中在做历史记录的改造工作,主持讨论了多次,但每次讨论完都觉的很完美了,但实际在写这部分逻辑的时候还是会发现一些问题出来,很难受,反反复复的暴露智商是硬伤,人艰不拆,暂先不扯 ...

  6. java 第三章 流程控制语句

    1.条件语句 (1)if 语句 ( 单一条件) if (表达式){ 执行语句块 } (2)执行流程 · if 语句 条件表达式可以是任何一种逻辑表达式   如果表达式值为true,则执行花括号的内容后 ...

  7. 集成activiti到现有项目中

    1.在lib中添加相关的jar包 2.找到一个activiti.cfg.xml,若是想用现有的数据库需要配置 <?xml version="1.0" encoding=&qu ...

  8. Java技术——I/O知识学习

    个字节,主要用在处理二进制数据,字节用来与文件打交道,所有文件的储存都是通过字节(byte)的方式,在磁盘上保留的并不是文件的字符而是先把字符编码成字节,再储存这些字节到磁盘.在读取文件(特别是文本文 ...

  9. asp.net mvc 无刷新加载

    1.视图(index) <!--start--> <div data-am-widget="list_news" class="am-list-news ...

  10. MinGW安装图文教程以及如何配置C语音编程环境

    MinGW安装图文教程以及如何配置C语音编程环境 转载自:http://www.jb51.net/softjc/192017.html MinGW 是一组包含文件和端口库,其功能是允许控制台模式的程序 ...