Frogs' Neighborhood
Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 10660   Accepted: 4433   Special Judge

Description

未名湖附近共有N个大小湖泊L1L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊LiLj之间有水路相连,则青蛙FiFj互称为邻居。现在已知每只青蛙的邻居数目x1x2, ..., xn,请你给出每两个湖泊之间的相连关系。

Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1x2,..., xn(0 ≤ xi ≤ N)。

Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

Sample Input

3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1

Sample Output

YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0 NO YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

Source

代码:

 #include"bits/stdc++.h"

 #define db double
#define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int N = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = ;
const db PI = acos(-1.0);
const db eps = 1e-;
const ll INF = 0x3fffffffffffffff;
struct P{int id,du;};
P a[N];
bool cmp(P a,P b){return a.du>b.du;}
int t,n;
bool s[][];
bool cal()
{
memset(s,, sizeof(s));
for(int i=;i<n;i++){
sort(a+i,a+n,cmp);
if(a[i].du>n-i-) return *puts("NO");
for(int j=i+;j<=i+a[i].du;j++){
if(!a[j].du) return *puts("NO");
a[j].du--;
int u=a[i].id,v=a[j].id;
s[u][v]=,s[v][u]=;
}
}
puts("YES");
for(int i=;i<n;i++)
for(int j=;j<n;j++) printf("%d%c",s[i][j],j==n-?'\n':' '); return ;
}
int main(){
ci(t);
for(int i=;i<=t;i++){
ci(n);
for(int i=;i<n;i++) ci(a[i].du),a[i].id=i;
cal();
if(i!=t) puts("");
}
return ;
}

POJ1659 可图性判定的更多相关文章

  1. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  2. 可图性判定--Havel-Hakimi定理

    两个概念 1.度序列 若把图G所有顶点的度数排成一个序列S,则称S为图G的度序列. 2.序列是可图的 一个非负整数组成的序列如果是某个无向图的度序列,则称该序列是可图的. Havel-Hakimi定理 ...

  3. 弦图的判定MCS算法(zoj1015)

    题意:裸的弦图的判定: 弦图定义:给出一个无向连通图,如果每个环中都存在至少一条弦(环中存在不相邻的两点直接相连)这样的图叫做弦图: 转载:http://blog.csdn.net/crux_d/ar ...

  4. HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)

    传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度 ...

  5. UVA10720 Graph Construction 度序列可图性

    Luogu传送门(UVA常年上不去) 题意:求一个度序列是否可变换为一个简单图.$\text{序列长度} \leq 10000$ 题目看起来很简单,但是还是有一些小细节需要注意首先一个简单的结论:一张 ...

  6. PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由

    03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...

  7. poj1637 Sightseeing tour 混合图欧拉回路判定

    传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个 ...

  8. .NET C#基础(1):相等性与同一性判定 - 似乎有点小缺陷的设计

    0. 文章目的   本文面向有一定.NET C#基础知识的学习者,介绍在C#中的常用的对象比较手段,并提供一些编码上的建议. 1. 阅读基础 1:理解C#基本语法与基本概念(如类.方法.字段与变量声明 ...

  9. 图的两种遍历:DFS&BFS

    DFS和BFS在图中的应用: 图连通性判定:路径的存在性:图中是否存在环:求图的最小生成树:求图的关键路径:求图的拓扑排序. DFS:简单的说,先一直往深处走,直到不能再深了,再从另一条路开始往深处走 ...

随机推荐

  1. Flume的load-balance、failover

    配置flume集群参考https://www.cnblogs.com/jifengblog/p/9277793.html load-balance负载均衡 介绍 负载均衡是用于解决一台机器(一个进程) ...

  2. 【Leetcode】【Medium】Single Number

    Given an array of integers, every element appears twice except for one. Find that single one. Note:Y ...

  3. May 30th 2017 Week 22nd Tuesday

    Knowledge will give you power, but character respect. 知识给你力量,品格给你别人的尊敬. Good characters can help us ...

  4. Hello World, S/4HANA for Customer Management 1.0

    SAP CRM的前世今生 在我之前的微信公众号文章 SAP的这三款CRM解决方案,您能区分清楚么我曾经提到过我作为成都SAP研究院CRM产品开发团队的一员工作过一段时间. 我向在SAP德国总部工作的德 ...

  5. python入门23 pymssql模块(python连接sql server增删改数据 )

    增删改数据必须connect.commit()才会生效 回滚函数 connect.rollback() 连接数据库 ''' dinghanhua sql server增删改 ''' import py ...

  6. python自动化下载yunfile(未完成)

    参考https://www.cnblogs.com/qqandfqr/p/7866650.html import re import requests import pytesseract impor ...

  7. C++中的RAII(转)

    转自https://blog.csdn.net/wangshubo1989/article/details/52133213 有很多东西我们一直在用,但是不知道他的名字. 什么是RAII? RAII是 ...

  8. ASP.NET SignalR 与LayIM配合,轻松实现网站客服聊天室(七)之 图文,附件消息(2016-05-05 12:13)

    上一篇介绍了加好友的流程,这里不再赘述,不过之前的聊天只能发送普通文字,那么本篇就教你如何实现发送附件和图片消息.我们先对功能进行分析: 发送图片,附件,需要实现上传图片和附件的功能. textare ...

  9. Pod常使用命令

    pod 命令汇总 # 创建默认的 Podfile $ pod init # 第一次使用安装框架 $ pod install # 安装框架,不更新本地索引,速度快 $ pod install --no- ...

  10. Vue.js系列之vue-resource(6)

    网址:http://blog.csdn.net/u013778905/article/details/54235906