Frogs' Neighborhood
Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 10660   Accepted: 4433   Special Judge

Description

未名湖附近共有N个大小湖泊L1L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊LiLj之间有水路相连,则青蛙FiFj互称为邻居。现在已知每只青蛙的邻居数目x1x2, ..., xn,请你给出每两个湖泊之间的相连关系。

Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1x2,..., xn(0 ≤ xi ≤ N)。

Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

Sample Input

3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1

Sample Output

YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0 NO YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

Source

代码:

 #include"bits/stdc++.h"

 #define db double
#define ll long long
#define vl vector<ll>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define rep(i, n) for(int i=0;i<n;i++)
using namespace std;
const int N = 1e6 + ;
const int mod = 1e9 + ;
const int MOD = ;
const db PI = acos(-1.0);
const db eps = 1e-;
const ll INF = 0x3fffffffffffffff;
struct P{int id,du;};
P a[N];
bool cmp(P a,P b){return a.du>b.du;}
int t,n;
bool s[][];
bool cal()
{
memset(s,, sizeof(s));
for(int i=;i<n;i++){
sort(a+i,a+n,cmp);
if(a[i].du>n-i-) return *puts("NO");
for(int j=i+;j<=i+a[i].du;j++){
if(!a[j].du) return *puts("NO");
a[j].du--;
int u=a[i].id,v=a[j].id;
s[u][v]=,s[v][u]=;
}
}
puts("YES");
for(int i=;i<n;i++)
for(int j=;j<n;j++) printf("%d%c",s[i][j],j==n-?'\n':' '); return ;
}
int main(){
ci(t);
for(int i=;i<=t;i++){
ci(n);
for(int i=;i<n;i++) ci(a[i].du),a[i].id=i;
cal();
if(i!=t) puts("");
}
return ;
}

POJ1659 可图性判定的更多相关文章

  1. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  2. 可图性判定--Havel-Hakimi定理

    两个概念 1.度序列 若把图G所有顶点的度数排成一个序列S,则称S为图G的度序列. 2.序列是可图的 一个非负整数组成的序列如果是某个无向图的度序列,则称该序列是可图的. Havel-Hakimi定理 ...

  3. 弦图的判定MCS算法(zoj1015)

    题意:裸的弦图的判定: 弦图定义:给出一个无向连通图,如果每个环中都存在至少一条弦(环中存在不相邻的两点直接相连)这样的图叫做弦图: 转载:http://blog.csdn.net/crux_d/ar ...

  4. HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)

    传送门 参考资料: [1]:图论-度序列可图性判断(Havel-Hakimi定理) •题意 给你 n 个非负整数列,判断这个序列是否为可简单图化的: •知识支持 握手定理:在任何无向图中,所有顶点的度 ...

  5. UVA10720 Graph Construction 度序列可图性

    Luogu传送门(UVA常年上不去) 题意:求一个度序列是否可变换为一个简单图.$\text{序列长度} \leq 10000$ 题目看起来很简单,但是还是有一些小细节需要注意首先一个简单的结论:一张 ...

  6. PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由

    03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...

  7. poj1637 Sightseeing tour 混合图欧拉回路判定

    传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个 ...

  8. .NET C#基础(1):相等性与同一性判定 - 似乎有点小缺陷的设计

    0. 文章目的   本文面向有一定.NET C#基础知识的学习者,介绍在C#中的常用的对象比较手段,并提供一些编码上的建议. 1. 阅读基础 1:理解C#基本语法与基本概念(如类.方法.字段与变量声明 ...

  9. 图的两种遍历:DFS&BFS

    DFS和BFS在图中的应用: 图连通性判定:路径的存在性:图中是否存在环:求图的最小生成树:求图的关键路径:求图的拓扑排序. DFS:简单的说,先一直往深处走,直到不能再深了,再从另一条路开始往深处走 ...

随机推荐

  1. sqlserver 带输出参数的存储过程

    --创建存储过程create procedure proc_stu@sname varchar(20),@pwd varchar(50),@flag bit outputasif exists(sel ...

  2. Quartus II管脚批量分配文件(.tcl)格式

    package require ::quartus::project set_location_assignment PIN_E1 -to clk set_location_assignment PI ...

  3. 解决Myeclipse报PermGen space异常的问题

    最近使用eclipse做开发,使用的服务器是tomcat,但在启动时报了Caused by: java.lang.OutOfMemoryError: PermGen space的异常. 这个错误很常见 ...

  4. jQuery插件编写步骤详解

    如今做web开发,jquery 几乎是必不可少的,就连vs神器在2010版本开始将Jquery 及ui 内置web项目里了.至于使用jquery好处这里就不再赘述了,用过的都知道.今天我们来讨论下jq ...

  5. 谣言粉碎机 - 极短时间内发送两个Odata request,前一个会自动被cancel掉?

    背景 有时我们能在Chrome开发者工具的Network tab里观察到SAP UI5应用会发出某些状态为"取消"的OData请求.如下图第五个请求. 之前有一种似是而非的说法:极 ...

  6. Android(java)学习笔记44:Map集合的遍历之键值对对象找键和值

    1. Map集合的遍历之 键值对对象找 键和值: package cn.itcast_01; import java.util.HashMap; import java.util.Map; impor ...

  7. 课堂笔记-------字符串类型string------练习

    字符串类型 一.string //打出s.时就会出现一堆的方框,要找不带箭头的(不带箭头的是我们现在可以用的到的),不要找带箭头的(带箭头的是扩展,现在还用不到) //不带箭头的都是对s的操作(动作和 ...

  8. [luoguP1090][Noip2004]合并果子

                                            合并果子 首先来看一下题目: (OI2004合并果子) [题目描述] 果园里,多多已经将所有的果子打了下来,而且按果子的 ...

  9. 【Linux-CentOS】CentOS安装Win双系统后Win启动项丢失及默认启动项修改

    转载自:搁浅bky,有部分更正,建议看此文. 1.Windows启动项消失的原因:   在安装Win7.8/10系统+CentOS7双系统后,默认会将mbr(Main Boot Record)改写为g ...

  10. Linux CentOS7下安装Zookeeper-3.4.10服务(最新)

    Linux CentOS7下安装Zookeeper-3.4.10服务(最新) 2017年10月27日 01:25:26 极速-蜗牛 阅读数:1933   版权声明:本文为博主原创文章,未经博主允许不得 ...