NiftyNet项目介绍

使用NiftyNet时,我们需要先将图像数据和标签进行一次简单的处理,得到对应的.csv文件。

对应文件格式为:

img.csv

image path
img_name img_path

label.csv

label path
img_label img_path

在此给出一个二分类的生成该文件的demo。首先,已经将两个类别的图片分别存储在两个文件夹中

demo

import pandas as pd
import os # 生成 img.csv
list_img = []
list_path = [] img_path = 'C:\\Users\\fan\\Desktop\\demo\\train\\ad'
img_name = os.listdir(img_path) for i, item in enumerate(img_name):
list_img.append(item)
list_path.append(img_path + "\\" + item) img_path = "C:\\Users\\fan\\Desktop\\demo\\train\\cn"
img_name = os.listdir(img_path)
for i, item in enumerate(img_name):
list_img.append(item)
list_path.append(img_path + "\\" + item) data_frame = pd.DataFrame({'image': list_img, 'path': list_path})
data_frame.to_csv('C:\\Users\\fan\\Desktop\\demo\\train\\img_path.csv', index=False) # 生成label.csv list_label_name = []
list_label_path = [] label_path = 'C:\\Users\\fan\\Desktop\\demo\\train\\ad'
label_name = os.listdir(label_path) for j, elem in enumerate(label_name):
list_label_name.append(elem[0:2])
list_label_path.append(label_path + '\\' + elem) label_path = 'C:\\Users\\fan\\Desktop\\demo\\train\\cn'
label_name = os.listdir(label_path) for j, elem in enumerate(label_name):
list_label_name.append(elem[0:2])
list_label_path.append(label_path + '\\' + elem)
print(list_label_name) label_dataframe = pd.DataFrame({'label': list_label_name, 'path': list_label_path})
label_dataframe.to_csv('C:\\Users\\fan\\Desktop\\demo\\train\\label.csv', index=False)

NiftyNet平台配置介绍

NiftyNet 数据预处理的更多相关文章

  1. 借助 SIMD 数据布局模板和数据预处理提高 SIMD 在动画中的使用效率

    原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升 ...

  2. R语言进行数据预处理wranging

    R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with R packages:tidyr dplyr Ground rules ...

  3. Scikit-Learn模块学习笔记——数据预处理模块preprocessing

    preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...

  4. Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)

    理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...

  5. R语言--数据预处理

    一.日期时间.字符串的处理 日期 Date: 日期类,年与日 POSIXct: 日期时间类,精确到秒,用数字表示 POSIXlt: 日期时间类,精确到秒,用列表表示 Sys.date(), date( ...

  6. weka数据预处理

    Weka数据预处理(一) 对于数据挖掘而言,我们往往仅关注实质性的挖掘算法,如分类.聚类.关联规则等,而忽视待挖掘数据的质量,但是高质量的数据才能产生高质量的挖掘结果,否则只有"Garbag ...

  7. 对数据预处理的一点理解[ZZ]

    数据预处理没有统一的标准,只能说是根据不同类型的分析数据和业务需求,在对数据特性做了充分的理解之后,再选择相关的数据预处理技术,一般会用到多种预处理技术,而且对每种处理之后的效果做些分析对比,这里面经 ...

  8. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  9. sklearn数据预处理-scale

    对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as ...

随机推荐

  1. Hibernate 检索方式之 HQL 检索方式

    HQL(Hibernate Query Language) 是面向对象的查询语言,它和 SQL 查询语言有些相似.在 Hibernate 提供的各种检索方式中,HQL 是使用最广的一种检索方式,它有如 ...

  2. 201771010126 王燕《面向对象程序设计(Java)》第十二周学习总结

    实验十二  图形程序设计 实验时间 2018-11-14 1.实验目的与要求 (1) 掌握Java GUI中框架创建及属性设置中常用类的API: 创建空框架 . 在Java中,常采用框架(Frame) ...

  3. 【转】Python+opencv利用sobel进行边缘检测(细节讲解)

    #! usr/bin/env python # coding:utf-8 # 2018年7月2日06:48:35 # 2018年7月2日23:11:59 import cv2 import numpy ...

  4. vuejs小白入门

    后端做不好,是时候学习一下前端了,听说在很流行vue,那么久跟风学习一波. unbuntu下安装npm,然后安装node,这应该算是开发工具或者执行引擎吧. 感觉web前端框架怎么变,都是对html, ...

  5. [转载]SSH框架搭建详细图文教程

    http://www.cnblogs.com/hoobey/p/5512924.html

  6. 控件包含代码块(即 <% ... %>),因此无法修改控件集合。

    原因分析:在head里写的js代码中包含了<%=...%>代码 解决:把js的代码放到body中...

  7. React Native搭建开发环境 之 --走过的坑

    React Native是使用JavaScript和React编写原生移动应用 我的开发平台是基于windows系统,所以只支持android,要是想开发ios系统,那就只能考虑使用沙盒环境 接下来就 ...

  8. 接口调试之Postman 使用方法详解

    一.Postman背景介绍 用户在开发或者调试网络程序或者是网页B/S模式的程序的时候是需要一些方法来跟踪网页请求的,用户可以使用一些网络的监视工具比如著名的Firebug等网页调试工具.今天给大家介 ...

  9. Nginx限流配置

    电商平台营销时候,经常会碰到的大流量问题,除了做流量分流处理,可能还要做用户黑白名单.信誉分析,进而根据用户ip信誉权重做相应的流量拦截.限制流量.Nginx自身有的请求限制模块ngx_http_li ...

  10. Java中的方法(形参及实参)return返回类型

    如何定义 Java 中的方法 所谓方法,就是用来解决一类问题的代码的有序组合,是一个功能模块. 一般情况下,定义一个方法的语法是: 其中: 1. 访问修饰符:方法允许被访问的权限范围, 可以是 pub ...