好久没更博了

咕咕咕

现在多项式板子的常数巨大...周末好好卡波常吧....

LOJ #556


题意

给定$ m$种物品的出现次数$ B_i$以及大小$ A_i$

求装满大小为$[1..n]$的背包的方案数各是多少

数据范围全是$ 10^5$


$ Solution$

转化成生成函数求解

即是要求

$Ans=\prod\limits_{i=1}^m \sum\limits_{j=0}^{B_i} x^{A_i·j}$

等比数列收敛一下即是

$Ans= \prod\limits_{i=1}^m \frac{1-x^{(B_i+1)·A_i}}{1-x^{A_i}}$

直接乘复杂度巨大,考虑转求$ Ln(Ans)$

则有

$Ans=Exp(\sum\limits_{i=1}^m Ln(1-x^{(B_i+1)·A_i})-Ln(1-x^{A_i}))$

其中$ Ln(1-x)$的泰勒级数为$-\sum\limits_{i=1}^{\infty}\frac{x^i}{i}$

开个桶对所有指数记录一下,读入完成后调和级数累加即可

然后就是多项式$ Exp$的模版了

时间复杂度$ O(n \ log \ n)$


$ my \ code$

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define rt register int
#define ll long long
using namespace std;
namespace fast_IO{
const int IN_LEN=,OUT_LEN=;
char ibuf[IN_LEN],obuf[OUT_LEN],*ih=ibuf+IN_LEN,*oh=obuf,*lastin=ibuf+IN_LEN,*lastout=obuf+OUT_LEN-;
inline char getchar_(){return (ih==lastin)&&(lastin=(ih=ibuf)+fread(ibuf,,IN_LEN,stdin),ih==lastin)?EOF:*ih++;}
inline void putchar_(const char x){if(oh==lastout)fwrite(obuf,,oh-obuf,stdout),oh=obuf;*oh++=x;}
inline void flush(){fwrite(obuf,,oh-obuf,stdout);}
}
using namespace fast_IO;
//#define getchar() getchar_()
//#define putchar(x) putchar_((x))
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,ans; namespace poly{
#define p 998244353
vector<int>R;
vector<int>get(int n){
vector<int>ret(n);
for(rt i=;i<n;i++)ret[i]=read();
return ret;
}
void print(const vector<int>A){for(auto i:A)write((i+p)%p),putchar(' ');}
int ksm(int x,int y=p-){
int ans=;
for(rt i=y;i;i>>=,x=1ll*x*x%p)if(i&)ans=1ll*ans*x%p;
return ans;
}
void NTT(int n,vector<int>&A,int fla){
A.resize(n);
for(rt i=;i<n;i++)if(i>R[i])swap(A[i],A[R[i]]);
for(rt i=;i<n;i<<=){
int w=ksm(,(p-)//i);
for(rt j=;j<n;j+=i<<){
int K=;
for(rt k=;k<i;k++,K=1ll*K*w%p){
int x=A[j+k],y=1ll*K*A[i+j+k]%p;
A[j+k]=(x+y)%p,A[i+j+k]=(x-y)%p;
}
}
}
if(fla==-){
reverse(A.begin()+,A.end());
int invn=ksm(n);
for(rt i=;i<n;i++)A[i]=1ll*A[i]*invn%p;
}
}
vector<int>Resize(int n,vector<int>A){A.resize(n);return A;}
vector<int>Mul(vector<int>x,vector<int>y){
int lim=,sz=x.size()+y.size()-;
while(lim<=sz)lim<<=;R.resize(lim);
for(rt i=;i<lim;i++)R[i]=(R[i>>]>>)|(i&)*(lim>>);
NTT(lim,x,);NTT(lim,y,);
for(rt i=;i<lim;i++)x[i]=1ll*x[i]*y[i]%p;
NTT(lim,x,-);x.resize(sz);
return x;
}
vector<int>Inv(vector<int>A,int n=-){
if(n==-)n=A.size();
if(n==)return vector<int>(,ksm(A[]));
vector<int>b=Inv(A,(n+)/);
int lim=;while(lim<=n+n)lim<<=;R.resize(lim);
for(rt i=;i<lim;i++)R[i]=(R[i>>]>>)|(i&)*(lim>>);
A.resize(n);NTT(lim,A,);NTT(lim,b,);
for(rt i=;i<lim;i++)A[i]=1ll*b[i]*(2ll-1ll*A[i]*b[i]%p)%p;
NTT(lim,A,-);A.resize(n);
return A;
}
vector<int>Div(vector<int>A,vector<int>B){
int n=A.size(),m=B.size();
reverse(A.begin(),A.end());
reverse(B.begin(),B.end());
A.resize(n-m+),B.resize(n-m+);
int lim=;while(lim<=*(n-m+))lim<<=;R.resize(lim);
for(rt i=;i<lim;i++)R[i]=(R[i>>]>>)|(i&)*(lim>>);
vector<int>ans=Resize(n-m+,Mul(A,Inv(B)));
reverse(ans.begin(),ans.end());
return ans;
}
vector<int>Add(vector<int>A,vector<int>B){
int len=max(A.size(),B.size());A.resize(len);
for(rt i=;i<len;i++)(A[i]+=B[i])%=p;
return A;
}
vector<int>Sub(vector<int>A,vector<int>B){
int len=max(A.size(),B.size());A.resize(len);
for(rt i=;i<len;i++)(A[i]-=B[i])%=p;
return A;
}
vector<int>Mul(int x,vector<int>A){
for(rt i=;i<A.size();i++)A[i]=1ll*A[i]*x%p;
return A;
}
vector<int>deriv(vector<int>A){//求导
for(rt i=;i<A.size();i++)(A[i-]=1ll*A[i]*i%p);
A.pop_back();return A;
}
vector<int>integ(vector<int>A){//积分
A.push_back();
for(rt i=A.size()-;i>=;i--)A[i+]=1ll*A[i]*ksm(i+)%p;
A[]=;return A;
}
vector<int>Ln(const vector<int>A){return integ(Resize(A.size()-,Mul(deriv(A),Inv(A))));}
vector<int>Exp(vector<int>A,int n=-){
if(n==-)n=A.size();
if(n==)return vector<int>(,);
vector<int>A0=Resize(n,Exp(A,(n+)>>));
vector<int>now=Resize(n,Ln(A0));
for(rt i=;i<n;i++)now[i]=(A[i]-now[i])%p;now[]++;
return Resize(n,Mul(A0,now));
}
struct cp{
ll a,b,z;//a+bsqrt(z)
cp operator *(const cp s)const{
return {(1ll*a*s.a%p+1ll*b*s.b%p*z%p)%p,(1ll*a*s.b%p+1ll*b*s.a)%p,z};
}
};
cp ksm(cp x,int y){
cp ans={,,x.z};
for(rt i=y;i;i>>=,x=x*x)if(i&){
ans=x*ans;
}
return ans;
}
int Sqrt(int n){//求二次剩馀
if(ksm(n,(p-)/)!=)return -;
while(){
x=rand()%p;
if(ksm((1ll*x*x%p-n%p+p)%p,(p-)/)==)continue;
cp ret=ksm({x,,(1ll*x*x%p+p-n)%p},(p+)/);
return min(ret.a,p-ret.a);
}
}
vector<int>GetSqrt(vector<int>A,int n=-){
if(n==-)n=A.size();
if(n==)return vector<int>(,Sqrt(A[]));
vector<int>ans=Resize(n,GetSqrt(A,n+>>)),C(A.begin(),A.begin()+n);
return Resize(n,Mul(ksm(),Add(ans,Mul(Inv(ans),C))));
}
vector<int>Pow(vector<int>A,int k){
A[]=;
return Exp(Mul(k,Ln(A)));
}
//#undef p
};
using namespace poly;
int inv[],v[];
int main(){
n=read();m=read();
for(rt i=;i<=m;i++){
int a=read(),b=read();
if(1ll*a*(b+)<=n&&b)v[a*(b+)]--;
if(a<=n)v[a]++;
}
inv[]=inv[]=;
for(rt i=;i<=n;i++)inv[i]=1ll*inv[p%i]*(p-p/i)%p;
vector<int>ans(n+);
for(rt i=;i<=n;i++)if(v[i])
for(rt j=;i*j<=n;j++)(ans[i*j]+=1ll*v[i]*inv[j]%p)%=p;
ans=Exp(ans);
for(rt i=;i<=n;i++)writeln((ans[i]+p)%p);
return flush(),;
}

LOJ #556. 「Antileaf's Round」咱们去烧菜吧的更多相关文章

  1. 【刷题】LOJ 556 「Antileaf's Round」咱们去烧菜吧

    题目描述 你有 \(m\) 种物品,第 \(i\) 种物品的大小为 \(a_i\) ​,数量为 \(b_i\)​( \(b_i=0\) 表示有无限个). 你还有 \(n\) 个背包,体积分别为 \(1 ...

  2. 「LOJ 556 Antileaf's Round」咱们去烧菜吧

    「LOJ 556 Antileaf's Round」咱们去烧菜吧 最近在看 jcvb 的生成函数课件,顺便切一切上面讲到的内容的板子题,这个题和课件上举例的背包计数基本一样. 解题思路 首先列出答案的 ...

  3. LOJ#557. 「Antileaf's Round」你这衣服租来的吗(FHQ Treap+珂朵莉树)

    题面 传送门 题解 好吧我是不太会复杂度分析-- 我们对于每种颜色用一个数据结构维护(比方说线段树或者平衡树,代码里写的平衡树),那么区间询问很容易就可以解决了 所以现在的问题是区间修改,如果区间颜色 ...

  4. loj558 「Antileaf's Round」我们的CPU遭到攻击

    考完了可以发题解了. 做法是link-cut tree维护子树信息,并不需要维护黑树白树那些的. 下面是一条重链: 如果4是根的话,那么在splay上是这样的: 在splay中,子树的信息都已经计算完 ...

  5. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  6. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  7. Loj #2321. 「清华集训 2017」无限之环

    Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...

  8. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

  9. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

随机推荐

  1. day15-面向对象基础(二)

    今天整理类的组合以及类的三大特性 1.类的组合 2.类的继承 3.类的封装 4.类的多态 开始今日份整理 1.类的组合 类与类之间,并不是独立的,很多的时候在正常使用的时候都是类与类之间互相调用,所以 ...

  2. node+mysql 数据库连接池

    1. 什么是数据库连接池? 数据库连接池是程序启动时建立足够的数据库连接,并将这些连接组成一个池,由程序动态地对池中的连接进行申请,使用和释放. 2. 使用数据库连接池原理及优点是什么? 数据库连接池 ...

  3. 在Fabric ChainCode中导入第三方包(以状态机为例)

    在企业级应用开发中,经常会涉及到流程和状态,而有限状态机(FSM)则是对应的一种简单实现,如果复杂化,就上升到Workflow和BPM了.我们在Fabric ChainCode的开发过程中,也很可能涉 ...

  4. UITouch - BNR

    本节任务:创建一个视图,让用户在视图上拖动手指来画线. UIView类能够重载4个方法来处理不同的触摸事件. - (void)touchesBegan:(NSSet *)touches withEve ...

  5. 随心测试_软测基础_003< 理解测试 >

    目标:对于软件测试基础,利用清晰的框架,掌握相关知识点. 做某件事情,思路如下: 以上过程,理解为:针对x一个对象,围绕特定的目的,利用具备的方法,按一定的流程做事情,并反复思考总结,这样做是否达到目 ...

  6. cookie跨域共享

    domain和path属性,domain就是当前域,默认为请求的地址,如网址为www.jb51.net/test/test.aspx,那么domain默认为www.jb51.net,path默认就是当 ...

  7. vue脚手架搭建项目引用百度地图--出坑

    这是官网地址 https://dafrok.github.io/vue-baidu-map/#/zh/start/installation 需要声明注意的是 BaiduMap 组件容器本身是一个空的块 ...

  8. ☆ [NOI2014] 魔法森林 「LCT动态维护最小生成树」

    题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:带权无向图,每条边有权值\(a[i],b[i]\).要求一条从\(1\)到\(N\)的路径,使得这条路径上的\(Ma ...

  9. 指数型生成函数 及 多项式求ln

    指数型生成函数 我们知道普通型生成函数解决的是组合问题,而指数型生成函数解决的是排列问题 对于数列\(\{a_n\}\),我们定义其指数型生成函数为 \[G(x) = a_0 + a_1x + a_2 ...

  10. PEP8中文翻译(转)

    原文:https://github.com/zgia/manual PEP 8 -- Style Guide for Python Code PEP Index > PEP 8 -- Style ...