Overview

Image viewer is a typical application for large display. It makes use of the high-resolution large display and lead to more efficient way for viewing images. Image viewer utilizes the output of the calibration phase (geometric result file and alpha masks), makes the necessary geometric and photometric correction and shows the resulted image on the multi-projector display. With the benefit of the much larger display area and higher resolution, uses can see both the overall picture and details at the same time.

Algorithms

In order to display the image on the multi-projector based large display, the input image texture shown on every projector need to be warped according to the calibration result. This includes geometric correction and photometric correction. The details of the algorithms are introduced below.

    For geometric correction, we use what we called Piecewise-Linear Methods. The basic idea is to apply a piecewise-linear mapping of the projector coordinates to camera coordinates. The tessellation is implemented using standard Delaunay triangulation. The geometric correction is implemented using bilinear interpolation of these mappings at the vertices of the triangles. This method needs minimum calculation and only need to apply interpolation triangle-by-triangle to the corresponding tessellated mesh in the projectors coordinate space. The final result is a geometrically correct image in the camera's view (or in the view of the person who stand at the spot of the camera). The algorithm is also very robust and can apply to curved surface or even corner of the wall. For a more specific explanation, please refer to Chapter 3.3.4 of Reference [1].

    For photometric correction, we use the blending techniques to address overlapped regions and try to smooth color transitions across different projectors. The smooth transitions can be achieved by using a linear or cosine ramp, which attenuates pixel intensities in the overlapped region. For one pixel in the overlapped area, the more it near the boundary of the projector, the less the intensity of this pixel in the projector will be. In order to control the intensity of each pixel, we generate an alpha map for each projector in the calibration stage. The generation of alpha map follows these steps: first, we identify the display area each projector occupied in the camera image; then we calculate the distance transform image for each projector; next, we use the value of the distance transform image as weight and normalize it to 0~255. We save this normalized image as alpha image. During the photometric correction, each of the pixels to be shown will use this alpha image as an alpha mask. A gamma corrrection may also apply. For a more specific explanation, please refer to Chapter 4.4.3 of Reference [1].

Download

Please go to the downloadpage.

How to use the code

Before you start, you should first choose the configuration you would like to adopt according to your intention and available hardware. We provided codes for multi-projector multi-PC configuration and multi-projector single-PC configuration. Below are the step-by-step instructions about how to use the code.

Multi-Projector Multi-PC Configuration:

  1. Download the corresponding binary package named ImageClient (control client running on master PC) and ImageServer (render server running on render PC) from the above "Download" Section;
  2. Connect the PCs and projectors as showed in Figure 3 except not necessary to connect the camera;
  3. Copy the calibration result file (result2x2.txt), alpha image (Px.bmp) and the demo images to the working directory of all the render servers;
  4. Run the following program on all the rendering PCs from command line with:
    ImageServer.exe
  5. Modify the configuration file named Client4.cfg according to your actual configuration (IP address, port, gamma, etc);
  6. Run the control client program on the master PC from command line with:
    ImageClient.exe Client4.cfg demo1.bmp
  7. If everything goes well, you will see the image demo1.bmp showing on the large display correctly;
  8. You can use mouse and keyboard to zoom in/zoom out, change the position and so on, please see the command line help of the program.

Multi-Projector Single-PC Configuration:

  1. Download the corresponding binary package named MMonImageViewer from the above "Download" Section;
  2. Connect the PCs and projectors as showed in Figure 4 except not necessary to connect the camera;
  3. Make sure that you have multiple graphics cards installed properly;
  4. From the desktop of your Windows XP, go to "Right-Click->Properties->Settings", enable all the monitors connected by select the "Extend my Windows desktop onto this monitor" check box; Make sure the top left projector is set as primary display and drag the monitor icons to match the physical arrangement;
  5. Copy the calibration result file (result2x2.txt), alpha image (Px.bmp) and the demo images to the working directory of the PC;
  6. Run the following program on the PC from command line with:
    MMonImageViewer.exe Client4.cfg demo1.bmp
  7. If everything goes well, you will see the image named demo1.bmp showing on the large display correctly;
  8. You can use mouse and keyboard to zoom in/zoom out, change the position and so on, please see the command line help of the program.

Multi-Projector Based Display Code ---- ImageViewer的更多相关文章

  1. Multi-Projector Based Display Code ------- Home

    Overview This project provides you with the tools and techniques you need to create your own large-a ...

  2. Multi-Projector Based Display Code ---- FAQ

    Frequently Asked Question How do I know that my camera has a proper lens? Answer: If you can see exa ...

  3. Multi-Projector Based Display Code ---- ModelViewer

    Overview Model viewer is another application we provided for large display. It is designed for viewi ...

  4. Multi-Projector Based Display Code ---- Calibration

    Overview As mentioned previously, there are two main steps in generating a seamless display. The fir ...

  5. Multi-Projector Based Display Code ---- Download

    The code providing are for your reference. Please download the code according to your hareware confi ...

  6. Peer Code Reviews Made Easy with Eclipse Plug-In

    欢迎关注我的社交账号: 博客园地址: http://www.cnblogs.com/jiangxinnju/p/4781259.html GitHub地址: https://github.com/ji ...

  7. Code Pages

    https://docs.microsoft.com/en-us/windows/desktop/intl/code-pages Most applications written today han ...

  8. 设备管理 USB ID

    发现个USB ID站点,对于做设备管理识别的小伙伴特别实用 http://www.linux-usb.org/usb.ids 附录: # # List of USB ID's # # Maintain ...

  9. Oracle Database 11g express edition

    commands : show sys connect sys as sysdba or connect system as sysdba logout or disc clear screen or ...

随机推荐

  1. 肺结节CT影像特征提取(三)——肺结节CT影像特征提取系统软件设计

    肺结节的特征提取在临床中有着重要应用,在上篇文章已经对肺结节的基本特征和CT影像特征提取算法有了介绍,提出了三类肺结节CT影像特征提取算法.本文重点介绍肺结节CT影像特征提取系统的功能介绍及使用,利用 ...

  2. C++设计模式——组合模式

    问题描述 上图,是一个公司的组织结构图,总部下面有多个子公司,同时总部也有各个部门,子公司下面有多个部门.如果对这样的公司开发一个OA系统,作为程序员的你,如何设计这个OA系统呢?先不说如何设计实现, ...

  3. ASP.NET Core之中间件

    本文翻译自:http://www.tutorialsteacher.com/core/aspnet-core-middleware 基本概念 ASP.NET Core引入了中间件的概念,中间件是在AS ...

  4. 【原创】运维基础之keepalived

    keepalived 2.0.12 官方:http://www.keepalived.org/ 一 简介 Keepalived is a routing software written in C. ...

  5. Python 爬虫 58同城

    目标站点需求分析 获取各类产品的名字,地区,时间,价格 涉及的库 BeautifulSoup,requests,time,pymongo 获取各大类产品的链接 获取单页源码 解析单页源码 保存到文件中 ...

  6. 最完整的dos命令字典,IIS服务命令,FTP命令

    https://www.cnblogs.com/accumulater/p/10670051.html(优秀博文) 一.最完整的dos命令字典net use ipipc$ " " ...

  7. Ubuntu系统查看显卡型号和NVIDIA驱动版本

    查看GPU型号 lspci | grep -i nvidia 查看NVIDIA驱动版本 sudo dpkg --list | grep nvidia-*

  8. Linux 目录结构和常用命令

    Linux目录结构 目录 说明 bin 存放二进制可执行文件(ls,cat,mkdir等) boot 存放用于系统引导时使用的各种文件 dev 用于存放设备文件 etc 存放系统配置文件 home 存 ...

  9. numpy的array合并-【老鱼学numpy】

    概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, ...

  10. Scala集合常用方法解析

    Java 集合 : 数据的容器,可以在内部容纳数据  List : 有序,可重复的  Set : 无序,不可重复  Map : 无序,存储K-V键值对,key不可重复 scala 集合 : 可变集合( ...