【tensorflow】学习笔记
1、tensorflow中dynamic_rnn和rnn有什么区别?
- 在tensorflow中没有找到rnn这个方法难道是废弃掉了?
rnn是静态图,比如有10个时间序列,那么它将全部展开,并且存储这十个图,
dynamic_rnn是动态的,不会全部存储这些图
dynamic_rnn对于不同的时间步的batch可以是长度不同的数据,它会根据不同的迭代进行对齐
- dynamic_rnn与static_rnn区别
1、输入输出的结构不一样
dynamic_rnn的输入[batch, n_steps, input], 输出对应 [batch, n_steps, output]
static_rnn的输入[n_steps, batch, input], 输出对应[n_steps, batch, input]
2、sparse_softmax_cross_entropy_with_logits vs softmax_cross_entropy_with_logits
二者在tensorflow中的效果都是一样的,先对输出结果进行softmax,然后求交叉熵,不同的一点就是 输入labels的形式,
在sparse_softmax_cross_entropy_with_logits中,labels的维度是[batch_size], 就是batch_size个整数组成的一位向量,每一个整数代表样本的类别,
而在softmax_cross_entropy_with_logits中,labels的维度是[batch_size, num_classes], 也就是每一个样本都以one-hot形式编码
共同点:
输入都需要unscaled logits,因为tensorflow内部机制会将其进行归一化操作以提高效率
参考:https://blog.csdn.net/yc461515457/article/details/77861695
3、tensorflow.contrib.learn.preprocessing.VocabularyProcessor
一个建立字典,并获取索引有用的函数
【tensorflow】学习笔记的更多相关文章
- Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
随机推荐
- solr8.0 ik中文分词器的简单配置(二)
下载ik分词器,由于是solr8.0,一些ik分词器版本可能不兼容,以下是个人亲测可行的版本 ik分词器下载 然后将解压出来的两个jar包放到以下路径: 其它的三个文件放到以下路径: 如果没有clas ...
- 深圳市共创力推出独家课程《AHB和OSG》高级实务培训课程!
<AHB和OSG>高级实务培训课程大纲 [适合对象]:高层管理者.产品经理.资源经理.各专项经理.研发等部门的负责人和骨干员工. [课程受益]:高层如何对项目的优先级进行排序和资源分配. ...
- C# 直接引用js文件,调js里的数据
C# 直接引用js文件,调js里的数据 引入命名空间 using System.IO; string path = AppDomain.CurrentDomain.BaseDirectory + &q ...
- python之list和tuple
https://www.cnblogs.com/evablogs/p/6691743.html list和tuple区别: 相同:均为有序集合 异同:list可变,tuple一旦初始化则不可变 lis ...
- debian9.6修改系统语言
(中文改英文) 在VM虚拟机中安装debian9.6(查看版本命令 cat /etc/debian_version ),安装时选择语言为中文:在控制台登录操作时,大部分提示信息显示为乱码,修改中文语言 ...
- windows10+VS+CUDA+cuDNN+TensorFlow-gpu环境搭建(问题及解决)
TensorFlow-gpu环境需要CUDA+cuDNN+python,CUDA又需要VS,所以,,,环境越来越大哈哈. 1.主要环境: Python 3.6 CUDA9.0 Cudann7.0 Te ...
- ASP.NET基础知识汇总之WebConfig自定义节点详细介绍
之前介绍过Webconfig的具体知识ASP.NET基础知识汇总之WebConfig各节点介绍.今天准备封装一个ConfigHelper类,涉及到了自定义节点的东东,平时虽然一直用,但也没有系统的总结 ...
- 数据结构学习之字符串匹配算法(BF||KMP)
数据结构学习之字符串匹配算法(BF||KMP) 0x1 实验目的 通过实验深入了解字符串常用的匹配算法(BF暴力匹配.KMP.优化KMP算法)思想. 0x2 实验要求 编写出BF暴力匹配.KM ...
- Neutron: Load Balance as a Service(LBaaS)负载均衡
load balancer 负责监听外部的连接,并将连接分发到 pool member. LBaaS 有三个主要的概念: Pool Member,Pool 和 Virtual IP Pool M ...
- feilong's blog | 目录
每次把新博客的链接分享到技术群里,我常常会附带一句:蚂蚁搬家.事实上也确实如此,坚持1篇1篇的把自己做过.思考过.阅读过.使用过的技术和教育相关的知识.方法.随笔.索引记录下来,并持续去改进它们,希望 ...