【tensorflow】学习笔记
1、tensorflow中dynamic_rnn和rnn有什么区别?
- 在tensorflow中没有找到rnn这个方法难道是废弃掉了?
rnn是静态图,比如有10个时间序列,那么它将全部展开,并且存储这十个图,
dynamic_rnn是动态的,不会全部存储这些图
dynamic_rnn对于不同的时间步的batch可以是长度不同的数据,它会根据不同的迭代进行对齐
- dynamic_rnn与static_rnn区别
1、输入输出的结构不一样
dynamic_rnn的输入[batch, n_steps, input], 输出对应 [batch, n_steps, output]
static_rnn的输入[n_steps, batch, input], 输出对应[n_steps, batch, input]
2、sparse_softmax_cross_entropy_with_logits vs softmax_cross_entropy_with_logits
二者在tensorflow中的效果都是一样的,先对输出结果进行softmax,然后求交叉熵,不同的一点就是 输入labels的形式,
在sparse_softmax_cross_entropy_with_logits中,labels的维度是[batch_size], 就是batch_size个整数组成的一位向量,每一个整数代表样本的类别,
而在softmax_cross_entropy_with_logits中,labels的维度是[batch_size, num_classes], 也就是每一个样本都以one-hot形式编码
共同点:
输入都需要unscaled logits,因为tensorflow内部机制会将其进行归一化操作以提高效率
参考:https://blog.csdn.net/yc461515457/article/details/77861695
3、tensorflow.contrib.learn.preprocessing.VocabularyProcessor
一个建立字典,并获取索引有用的函数
【tensorflow】学习笔记的更多相关文章
- Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
随机推荐
- 亿级流量场景下,大型架构设计实现【2】---storm篇
承接之前的博:亿级流量场景下,大型缓存架构设计实现 续写本博客: ****************** start: 接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系 ...
- Android为TV端助力 外挂字幕(设置颜色,大小,位置,微调字幕)
前提摘要: 可以给电影加字幕,目前支持srt和ass格式, 功能摘要: 支持微调字幕,设置大小,颜色,位置 1 .字幕解析类 package com.hhzt.iptv.lvb_x.utils; ...
- vue input输入框长度限制
今天在开发登录页时,需要设置登录输入框的长度,输入类型为number <input type="number" maxlength="11" placeh ...
- Android MVP
大家先看看目录结构 先看V层 View里面我写了一个接口LoginView 然后,在登录这个Activity 去实现这个接口,并实现其抽象方法.即看LoginActivity onCreate中引用了 ...
- [20190416]查看shared latch gets的变化.txt
[20190416]查看shared latch gets的变化.txt 1.环境:SYS@book> @ ver1PORT_STRING VERSION ...
- modbus串口通讯C#
简介 公司给的一个小任务,这篇文章进行详细讲解 题目: modbus串口通讯 主要内容如下: 1.实现使用modbus通讯规约的测试软件: 2.具有通信超时功能: 3.分主站从站,并能编辑报文.生成报 ...
- nginx地址代理(2)
本章要讲的是服务器的代理: Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器, 一对一代理:就一个服务器监听 server { listen ...
- 基于gdal的格网插值
格网插值就是使用离散的数据点创建一个栅格图像的过程.通常情况下,有一系列研究区域的离散点,如果我们想将这些点转换为规则的网格数据来进行进一步的处理,或者和其他网格数据进行合并 等处理,就需要使用格网插 ...
- wordpress如何利用插件添加优酷土豆等视频到自己的博客上
wordpress有时候需要添加优酷.土豆等网站的视频到自己的博客上,传统的分享方法不能符合电脑端和手机端屏幕大小的需求,又比较繁琐,怎样利用插件的方法进行添加呢,本视频向你介绍一款这样的插件——Sm ...
- 毕业设计(3)基于MicroPython的篮球计时计分器模型的设计与实现
前言 我们身边有不少人都喜欢看篮球比赛或者经常打篮球.说起篮球,肯定要提到NBA(美国职业篮球联赛),现在也正是NBA 18-19赛季常规赛的时候.最近3月5日,韦少22分帮助雷霆终结了四连败,哈登4 ...