首先看几个问题

1、实现参数的稀疏有什么好处?

一个好处是可以简化模型、避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数作用,会引发过拟合。并且参数少了模型的解释能力会变强。

2、参数值越小代表模型越简单吗?

是。越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反应了在这个区间的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。

一、AIC

1、简介

AIC信息准则即Akaike information criterion,是衡量统计模型拟合优良性(Goodness of fit)的一种标准,由于它为日本统计学家赤池弘次创立和发展的,因此又称赤池信息量准则。它建立在熵的概念基础上,可以权衡所估计模型的复杂度和此模型拟合数据的优良性。

2、表达式

  • k为参数数量
  • L是似然函数

增加自由参数的数目提高了拟合的优良性,AIC鼓励数据拟合的优良性但是尽量避免出现过拟合的情况。所以优先考虑的模型应是AIC值最小的那一个,假设在n个模型中作出选择,可一次算出n个模型的AIC值,并找出最小AIC值对应的模型作为选择对象。

一般而言,当模型复杂度提高(k)增大时,似然函数L也会增大,从而使AIC变小,但是k过大时,似然函数增速减缓,导致AIC增大,模型过于复杂容易造成过拟合现象。

二、BIC

1、简介

BIC= Bayesian Information Criterions,贝叶斯信息准则。

2、表达式

BIC=ln(n)k-2ln(L)

  • L是似然函数
  • n是样本大小
  • K是参数数量

三、总结

1、共性

构造这些统计量所遵循的统计思想是一致的,就是在考虑拟合残差的同事,依自变量个数施加“惩罚”。

2、不同点

  • BIC的惩罚项比AIC大,考虑了样本个数,样本数量多,可以防止模型精度过高造成的模型复杂度过高。
  • AIC和BIC前半部分是一样的,BIC考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。

AIC与BIC的更多相关文章

  1. AIC和BIC

    一.模型选择之AIC和BIC 人们提出许多信息准则,通过加入模型复杂度的惩罚项来避免过拟合问题,此处我们介绍一下常用的两个模型选择方法 赤池信息准则(Akaike Information Criter ...

  2. 用于模型选择的AIC与BIC

    一.AIC(Akaike information Criterion)准则 二.BIC(Bayesian information Criterion)准则 参考文献: [1]AIC与BIC区别

  3. 赤池信息准则AIC,BIC

    很多参数估计问题均采用似然函数作为目标函数,当训练数据足够多时,可以不断提高模型精度,但是以提高模型复杂度为代价的,同时带来一个机器学习中非常普遍的问题——过拟合.所以,模型选择问题在模型复杂度与模型 ...

  4. aic bic mdl

    https://blog.csdn.net/xianlingmao/article/details/7891277 https://blog.csdn.net/lfdanding/article/de ...

  5. scikit-learn 线性回归算法库小结

    scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析,本文就对这些类库的使用做一个总结,重点讲述这些线性回归算法库的不同和各自的使用场景. 线性回归的目的是要得到输 ...

  6. 7 Types of Regression Techniques you should know!

    翻译来自:http://news.csdn.net/article_preview.html?preview=1&reload=1&arcid=2825492 摘要:本文解释了回归分析 ...

  7. logistic回归和probit回归预测公司被ST的概率(应用)

    1.适合阅读人群: 知道以下知识点:盒状图.假设检验.逻辑回归的理论.probit的理论.看过回归分析,了解AIC和BIC判别准则.能自己跑R语言程序 2.本文目的:用R语言演示一个相对完整的逻辑回归 ...

  8. 时间序列分析算法【R详解】

    简介 在商业应用中,时间是最重要的因素,能够提升成功率.然而绝大多数公司很难跟上时间的脚步.但是随着技术的发展,出现了很多有效的方法,能够让我们预测未来.不要担心,本文并不会讨论时间机器,讨论的都是很 ...

  9. 【机器学习笔记之五】用ARIMA模型做需求预测用ARIMA模型做需求预测

    本文结构: 时间序列分析? 什么是ARIMA? ARIMA数学模型? input,output 是什么? 怎么用?-代码实例 常见问题? 时间序列分析? 时间序列,就是按时间顺序排列的,随时间变化的数 ...

随机推荐

  1. pyspider 初次使用

    一 安装 pip install pyspider 请安装PhantomJS:http://phantomjs.org/build.html 二 检验是否启动成功 cmd中输入: pyspider 安 ...

  2. Maps JavaScript API的JavaScript代码

    要请求多个库,请用逗号分隔它们   <script src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY& ...

  3. java多线程编程之连续打印abc的几种解法

    一道编程题如下: 实例化三个线程,一个线程打印a,一个线程打印b,一个线程打印c,三个线程同时执行,要求打印出10个连着的abc. 题目分析: 通过题意我们可以得出,本题需要我们使用三个线程,三个线程 ...

  4. JSP中常用的的EL表达式的汇总

    Jsp基础知识 jsp的组成 html静态页面(css.javascript) java代码 <% %> (_jspService方法中) 内置对象 out request 表达式 < ...

  5. elk部署之前注意事项

    注意事项: 1.不能使用root用户登录,需要是用root 之外的用户登录到系统. 2.centos系统 运行内存不能小于2G,若低于2G需要修改jvm. vi  {jvm_home}/config/ ...

  6. MySQL性能优化神器—explain

    一.explain是什么? 简单来讲就是官方给的一个优化工具,直接在你的SQL语句前加上explain,执行整条语句,之后你就可以根据执行结果优化你的SQL啦,废话不多说,直接刚实例 测试实例 1.创 ...

  7. sql stuff函数的语法和作用

    sql stuff函数用于删除指定长度的字符,并可以在制定的起点处插入另一组字符.sql stuff函数中如果开始位置或长度值是负数,或者如果开始位置大于第一个字符串的长度,将返回空字符串.如果要删除 ...

  8. 京东iPad新品开售销量环比增22倍

    一年一度万众期待的 Apple 春季发布会终于在今天凌晨揭晓,Apple 新推的 Apple News.Apple Card.Apple Arcade 和 Apple TV+ 四大软件服务惊喜不断,随 ...

  9. BZOJ 2733 永无乡

    splay启发式合并 启发式合并其实就是把集合数量小的合并到集合数量大的里去. 怎么合并呢,直接一个一个插入就行了.. 用并查集维护连通性,find(i)可以找到所在splay的编号 这题好像还可以合 ...

  10. mybatis-generator自动生成代码插件

    mybatis自动生成代码(实体类.Dao接口等)是很成熟的了,就是使用mybatis-generator插件. 它是一个开源的插件,使用maven构建最好,可以很方便的执行 插件官方简介: http ...