$Luogu5058 [ZJOI2004]嗅探器

给定一张 \(n\) 个点, \(m\) 条边的无向图,和两点 \(s,\ t\) ,求 \(s\to t\) 编号最小的必经点(排除 \(s,\ t\) )

\(n\leq100\)

tarjan


这题数据范围是可以 \(O(n^3)\) 暴力过的……

显然只需缩点后的树上 \(bl_s\) 到 \(bl_t\) 上找答案,统计割点贡献即可

然而此题有更简单的做法……

从 \(s\) 开始 tarjan,点 \(u\) 对答案有贡献当且仅当满足以下四个条件:

  1. \(u\neq s,\ t\)
  2. \(cut_u=\operatorname{true}\)
  3. \(dfn_v\leq dfn_t\) ,因为终点必须在 \(u\) 之后访问到
  4. \(dfn_u\leq low_t\) ,因为路径必须要经过 \(u\) 点

然后上板子

时间复杂度 \(O(n+m)\)

这份代码是缩点后统计链的……

#include <bits/stdc++.h>
using namespace std; const int maxn = 110, inf = INT_MAX;
bool cut[maxn];
int n, m, A, B, h[maxn], q[maxn << 1], pre[maxn << 1];
int top, dcc, tot, st[maxn], bl[maxn], dfn[maxn], low[maxn]; struct edges {
int nxt, to;
edges(int x = 0, int y = 0) :
nxt(x), to(y) {}
} e[maxn * maxn * 2]; vector <int> E[maxn << 1], d[maxn]; void addline(int u, int v) {
static int cnt;
e[++cnt] = edges(h[u], v), h[u] = cnt;
} void tarjan(int u, int f) {
static int now;
st[++top] = u;
dfn[u] = low[u] = ++now;
if (!f && !h[u]) {
d[++dcc].push_back(u);
return;
}
for (int i = h[u], chd = 0; i; i = e[i].nxt) {
int v = e[i].to;
if (!dfn[v]) {
tarjan(v, 1);
low[u] = min(low[u], low[v]);
if (dfn[u] <= low[v]) {
cut[u] |= f || chd++;
for (dcc++; st[top + 1] != v; top--) {
d[dcc].push_back(st[top]);
}
d[dcc].push_back(u);
}
} else {
low[u] = min(low[u], dfn[v]);
}
}
} int bfs(int S, int T) {
if (S == T) return inf;
int l = 1, r = 1;
q[1] = S, pre[S] = -1;
while (l <= r) {
int u = q[l++];
for (int v : E[u]) {
if (!pre[v]) {
q[++r] = v, pre[v] = u;
}
}
}
int res = inf;
for (int u = pre[T]; u != S; u = pre[u]) {
if (u > dcc) res = min(res, u);
}
return res;
} int main() {
scanf("%d", &n);
int u, v;
while (scanf("%d %d", &u, &v) && u && v) {
addline(u, v), addline(v, u);
}
scanf("%d %d", &A, &B);
for (int i = 1; i <= n; i++) {
if (!dfn[i]) tarjan(i, 0);
}
tot = dcc;
for (int i = 1; i <= n; i++) {
if (cut[i]) bl[i] = ++tot;
}
for (int i = 1; i <= dcc; i++) {
for (int j = 0, _sz = int(d[i].size()); j < _sz; j++) {
int x = d[i][j];
if (cut[x]) {
E[i].push_back(bl[x]);
E[bl[x]].push_back(i);
} else {
bl[x] = i;
}
}
}
int res = bfs(bl[A], bl[B]);
if (res > 1e9) {
puts("No solution");
} else {
for (int i = 1; i <= n; i++) {
if (cut[i] && bl[i] == res) {
printf("%d", i); break;
}
}
}
return 0;
}

Luogu5058 [ZJOI2004]嗅探器的更多相关文章

  1. Luogu5058 ZJOI2004嗅探器(割点)

    数据范围过小怎么做都行.考虑优秀一点的做法.考虑dfs树上两台中心服务器间的路径,路径上所有能割掉中心服务器所在子树的点均可以成为答案.直接从两点中的任意一点开始dfs就更方便了.一开始弱智的以为只要 ...

  2. [ZJOI2004]嗅探器

    题目概要: 在无向图中寻找出所有的满足下面条件的点:割掉这个点之后,能够使得一开始给定的两个点a和b不连通,割掉的点不能是a或者b.(ZJOI2004) 数据范围约定结点个数N≤100边数M≤N*(N ...

  3. ⌈洛谷5058⌋⌈ZJOI2004⌋嗅探器【Tarjan】

    题目连接 [洛谷传送门] [LOJ传送门] 题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络,蓝军共有两个信息中心,红军计划在某台中间服务器上安装一个嗅探器,从而能够侦听到两个信息中心 ...

  4. 洛谷P5058 [ZJOI2004]嗅探器

    题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络,蓝军共有两个信息中心,红军计划在某台中间服务器上安装一个嗅探器,从而能够侦听到两个信息中心互相交换的所有信息,但是蓝军的网络相当的庞大 ...

  5. P5058 [ZJOI2004]嗅探器 tarjan割点

    这个题是tarjan裸题.最后bfs暴力找联通块就行.(一开始完全写错了竟然得了70分,题意都理解反了...这数据强度...) 题干: 题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络 ...

  6. luogu P5058 [ZJOI2004]嗅探器

    题目描述 某军搞信息对抗实战演习,红军成功地侵入了蓝军的内部网络,蓝军共有两个信息中心,红军计划在某台中间服务器上安装一个嗅探器,从而能够侦听到两个信息中心互相交换的所有信息,但是蓝军的网络相当的庞大 ...

  7. [ZJOI2004]嗅探器 (割点)

    这题就比较好玩吧水题 以数据范围来看随便怎么做就能过 \(O(n)\)显然我们得过一个割点,其次这个割点得在\(x-y\)中间且不为始终点 其他都好说,在中间:从\(x\)开始遍历,首先得保证\(x- ...

  8. Tarjan总结(缩点+割点(边)+双联通+LCA+相关模板)

    Tarjan求强连通分量 先来一波定义 强连通:有向图中A点可以到达B点,B点可以到达A点,则称为强连通 强连通分量:有向图的一个子图中,任意两个点可以相互到达,则称当前子图为图的强连通分量 强连通图 ...

  9. tarjan 算法应用

    主要讲证明,流程倒是也有 然后发现自己并不会严谨证明 其实后面一些部分流程还是挺详细 本来这篇blog叫做"图论部分算法证明",然后发现OI中的图论想完全用数学上的方法证明完全超出 ...

随机推荐

  1. 前后端数据加密传输 RSA非对称加密

    任务需求:要求登陆时将密码加密之后再进行传输到后端. 经过半天查询摸索折腾,于是有了如下成果: 加密方式:RSA非对称加密.实现方式:公钥加密,私钥解密.研究进度:javascript与java端皆已 ...

  2. 【ASP.NET Core快速入门】(一)环境安装

    下载.NET Core SDK 下载地址:https://www.microsoft.com/net/download/windows https://www.microsoft.com/net/le ...

  3. scrapy爬虫学习系列二:scrapy简单爬虫样例学习

    系列文章列表: scrapy爬虫学习系列一:scrapy爬虫环境的准备:      http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_python_00 ...

  4. 计算机网络通信TCP/IP协议浅析 网络发展简介(二)

    本文对计算机网络通信的原理进行简单的介绍 首先从网络协议分层的概念进行介绍,然后对TCP.IP协议族进行了概念讲解,然后对操作系统关于通信抽象模型进行了简单介绍,最后简单描述了socket   分层的 ...

  5. [51nod1355] 斐波那契的最小公倍数

    Description 给定 \(n\) 个正整数 \(a_1,a_2,...,a_n\),求 \(\text{lcm}(f_{a_1},f_{a_2},...,f_{a_n})\).其中 \(f_i ...

  6. 基于.Net进行前端开发的技术栈发展路线(三)

    前言 上一篇<我的技能树二>文章分享了我的技能中的前端技能和Java技能,今天继续跟大家分享的就是后端技能了. 我的技能树 我当前的技能树: 其中,标注为黄色旗帜的是基本掌握,标注为红色旗 ...

  7. mybatis_16逆向工程

    简介 简单点说,就是通过数据库中的单表,自动生成java代码. Mybatis官方提供了逆向工程 可以针对单表自动生成mybatis代码(mapper.java\mapper.xml\po类) 企业开 ...

  8. 17、字符串转换整数 (atoi)

    17.字符串转换整数 (atoi) 请你来实现一个 atoi 函数,使其能将字符串转换成整数. 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止. 当我们寻找到的第一个非 ...

  9. webpack入门教程--3

    webpack打包还可以使用配置文件,我们先创建一个叫做webpack.config.js的文件.这里需要注意一下,这个JS文件的名字不是我们胡乱写的,也是不能更改的,因为webpack 命令执行后, ...

  10. js之制作网页计时器

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...