原文链接 https://www.cnblogs.com/cly-none/p/SRM704Div1B.html

给出\(n\)和模数\(P\)。\(q\)次询问,每次给出一个\([0,P-1]\)范围内的整数\(v\),求有多少长度为\(n\)的序列\(\{x\}\)满足\(x_i\)都是\([0,P-1]\)范围内的整数且\(\prod x_i \equiv v \pmod P\),答案对\(10^9 + 7\)取模。

\(n \leq 50 , \ q \leq 10^3, \ P \leq 10^9\)

注意:\(P\)不是质数。

这题大概就是道结论题。

首先,我们容易得到\(O(n P^2)\)的dp。

考虑\(P\)为质数的情况。我们发现,对于所有\(a \neq 1\),\(\{a, 2a, \cdots, (P-1)a\}\)都是互不相等的,即它在模\(P\)意义下就是\(\{1, 2, \cdots , P-1\}\)。那么,在dp中\(1\)到\(P-1\)的所有数的转移都是相同的,那它们的答案也应当是相等的。

尝试把这个结论拓展到\(P\)为正整数的情况下。我们设模\(P\)意义下的每个数 $v = v' \times d $ ,其中 \(d=gcd(v,P)\) 。同样地,\(\{ v', 2v', \cdots , (P-1)v' \}\)互不相等,于是 \(v\) 乘以\(1\)到\(P-1\)的所有数就是\(\{d, 2d, \cdots , (P-1)d \}\)。于是,我们发现\(gcd(x,P)\)相同的\(x\)在dp中有相同的转移,那就可以把它们的状态合并在一起。这样这个dp就优化到了\(O(n \sigma (n)^2)\)的了,已经可以通过本题。

但我们还可以套路地对\(P\)做质因数分解,得到\(P = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}\),然后以每个\(p_i^{a_i}\)为模数,分别求一次答案。考虑所有模\(P\)意义下的数和模\(p_i^{a_i}\)得到的序列是一一对应的,所以我们可知答案就是以每个\(p_i^{a_i}\)为模数的答案的积。那么,就能\(O(n \log^2 P + q \log P)\)地解决本题。(这里的\(\log P\)分析并不准确)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef double db;
#define fir first
#define sec second class ModEquation {
public:
vector <int> count( int n, int K, vector <int> query ) ;
};
const int MAX = 100000, MP = 30, N = 60, MOD = (int)(1e9 + 7);
int isp[MAX + 10], pri[MAX], pcnt, fac[MP], fcnt, num[MP];
int power(int a,int b) {
int ret = 1;
while (b) {
if (b & 1) ret = 1ll * ret * a % MOD;
a = 1ll * a * a % MOD;
b >>= 1;
}
return ret;
}
void prework() {
for (int i = 2 ; i <= MAX ; ++ i) {
if (!isp[i]) pri[++pcnt] = i;
for (int j = 1 ; pri[j] * i <= MAX ; ++ j) {
isp[pri[j] * i] = 1;
if (i % pri[j] == 0) break;
}
}
}
int dp[MP][N][MP];
void init() {
pcnt = fcnt = 0;
memset(isp,0,sizeof isp);
memset(dp,0,sizeof dp);
}
vector <int> ModEquation::count(int n, int K, vector <int> query) {
init();
prework();
for (int i = 1 ; i <= pcnt ; ++ i) {
if (K % pri[i]) continue;
fac[++fcnt] = pri[i];
num[fcnt] = 0;
while (K % pri[i] == 0)
++ num[fcnt], K /= pri[i];
}
if (K != 1) {
++ fcnt;
fac[fcnt] = K;
num[fcnt] = 1;
}
for (int i = 1 ; i <= fcnt ; ++ i) {
dp[i][0][0] = 1;
for (int j = 0 ; j < n ; ++ j) {
for (int a = 0 ; a <= num[i] ; ++ a)
for (int b = num[i], t = 1 ; b >= 0 ; -- b, t *= fac[i]) {
(dp[i][j+1][min(num[i], a + b)] += 1ll * dp[i][j][a] * (t - t / fac[i]) % MOD) %= MOD;
}
}
for (int a = num[i], t = 1 ; a >= 0 ; -- a, t *= fac[i]) {
dp[i][n][a] = 1ll * dp[i][n][a] * power(t - t / fac[i], MOD - 2) % MOD;
}
}
vector<int> ans = vector<int>();
for (int id = 0 ; id < (int)query.size() ; ++ id) {
int v = query[id], ret = 1;
for (int i = 1 ; i <= fcnt ; ++ i) {
int tmp = v, rec = 0;
for (int j = 1 ; j <= num[i] ; ++ j)
if (tmp % fac[i] == 0) tmp /= fac[i], ++ rec;
ret = 1ll * ret * dp[i][n][rec] % MOD;
}
ans.push_back(ret);
}
return ans;
} #undef fir
#undef sec

小结:数论题有一些基本结论和套路还是非常重要的。

【做题】SRM704 Div1 Median - ModEquation——数论的更多相关文章

  1. [日记&做题记录]-Noip2016提高组复赛 倒数十天

    写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...

  2. noip做题记录+挑战一句话题解?

    因为灵巧实在太弱辽不得不做点noip续下命QQAQQQ 2018 积木大赛/铺设道路 傻逼原题? 然后傻逼的我居然检查了半天是不是有陷阱最后花了差不多一个小时才做掉我做过的原题...真的傻逼了我:( ...

  3. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  4. UOJ 做题记录

    UOJ 做题记录 其实我这么弱> >根本不会做题呢> > #21. [UR #1]缩进优化 其实想想还是一道非常丝播的题目呢> > 直接对于每个缩进长度统计一遍就好 ...

  5. C语言程序设计做题笔记之C语言基础知识(下)

    C 语言是一种功能强大.简洁的计算机语言,通过它可以编写程序,指挥计算机完成指定的任务.我们可以利用C语言创建程序(即一组指令),并让计算机依指令行 事.并且C是相当灵活的,用于执行计算机程序能完成的 ...

  6. C语言程序设计做题笔记之C语言基础知识(上)

    C语言是一种功能强大.简洁的计算机语言,通过它可以编写程序,指挥计算机完成指定的任务.我们可以利用C语言创建程序(即一组指令),并让计算机依指令行事.并且C是相当灵活的,用于执行计算机程序能完成的几乎 ...

  7. 屏蔽Codeforces做题时的Problem tags提示

    当在Codeforces上做题的时,有时会无意撇到右侧的Problem tags边栏,但是原本并不希望能够看到它. 能否把它屏蔽了呢?答案是显然的,我们只需要加一段很短的CSS即可. span.tag ...

  8. ACM 做题过程中的一些小技巧。

    ACM做题过程中的一些小技巧. 1.一般用C语言节约空间,要用C++库函数或STL时才用C++; cout.cin和printf.scanf最好不要混用. 2.有时候int型不够用,可以用long l ...

  9. CodeM美团点评编程大赛复赛 做题感悟&题解

    [T1] [简要题意]   长度为N的括号序列,随机确定括号的方向:对于一个已确定的序列,每次消除相邻的左右括号(右左不行),消除后可以进一步合并和消除直到不能消为止.求剩下的括号的期望.\(N \l ...

随机推荐

  1. Eclipse中STM32工程建立步骤

    前段时间一直在折腾linux系统上STM32的开发,网上一顿搜,费劲九牛二虎之力终于把环境搭好了(现在都有点忘了,后面再折腾环境搭建一定要写个教程,今天先不写了). 自从环境搭好之后,就基本抛弃MDK ...

  2. linux基础命令--rmdir 删除空目录

    描述 rmdir命令用于删除空目录. 语法 rmdir [OPTION]... DIRECTORY... 选项列表 选项(常用的已加粗) 说明 --ignore-fail-on-non-empty 忽 ...

  3. 在linux服务器下JMeter如何执行jmx性能脚本

    准备环境:linux平台.jmeter安装包. jdk   一. 安装jdk        jdk的安装可以参考以下内容        http://jingyan.baidu.com/article ...

  4. python练习题-day23

    1.人狗大战(组合) class Person: def __init__(self,name,hp,aggr,sex,money): self.name=name self.hp=hp self.a ...

  5. JS生成当前月份包括最近12个月内的月份

    var last_year_month = function() { var result = []; for(var i = 0; i < 12; i++) { var d = new Dat ...

  6. mysql5安装

    一.MYSQL的安装 1.打开下载的mysql安装文件mysql-5.0.27-win32.zip,双击解压缩,运行“setup.exe”. 2.选择安装类型,有“Typical(默认)”.“Comp ...

  7. Java中几个常用类

    1.1 包装类 把八大基本数据类型封装到一个类中,并提供属性和方法,更方便的操作基本数据类型. 包装类的出现并不是用于取代基本数据类型,也取代不了. 包装类位于java.lang包中 Number 类 ...

  8. 分享一段js,判断是否是在iPhone中的Safari浏览器打开的页面

    头部引用jquery包 将下面的一段js写在</body>的前面 <script type="text/javascript"> var ua = navi ...

  9. string函数详解(配案例)

    多说无益上码~ #include<iostream> #include<algorithm> #include<cmath> #include<cstring ...

  10. apache24虚拟安装

    1.进入Apache的conf目录 2.打开httpd.conf文件输入: 2.1:查找<IfModule alias_module> 2.2:    在     ScriptAlias ...