题目分析:

我们令$G(x)$表示前$x$个点的平均深度,$F(x)$表示第$x$个点的期望深度。

有$F(x) = G(x-1)+1$,$G(x) = G(x-1)+\frac{1}{x}$

所以答案相当于一个调和级数和的前缀和,我们对小于1e6的暴力处理,大于1e6的利用欧拉常数做。

代码:

 #include<bits/stdc++.h>
using namespace std; const double euler = 0.57721566490153286060651209; long long n; int main(){
while(scanf("%lld",&n) == ){
if(n <= 1e6){
double ans = ;
for(int i=;i<=n;i++) ans += (double)(n-i+)/(double)i;
ans /= n;
printf("%.10lf\n",ans);
}else{
double hh = log(n)+euler;
hh = hh*(n+)-n;
hh /= n;
printf("%.10lf\n",hh);
}
}
return ;
}

POJChallengeRound2 Tree 【数学期望】的更多相关文章

  1. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  2. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  3. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  4. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  5. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  6. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  7. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  8. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  9. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

  10. 【BZOJ1076】奖励关(动态规划,数学期望)

    [BZOJ1076]奖励关(动态规划,数学期望) 题面 懒,粘地址 题解 我也是看了题解才会做 看着数据范围,很容易想到状压 然后,设\(f[i][j]\)表示当前第\(i\)轮,状态为\(j\)的期 ...

随机推荐

  1. Dynamics 365中自定义工作流活动获取的上下文分析及注意事项

    关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复244或者20170306可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong. ...

  2. win10的react native 开发环境搭建,使用Android模拟器

    1.打开cmd的管理员模式,win+X,选择命令提示符(管理员)即可,运行如下命令: @"%SystemRoot%\System32\WindowsPowerShell\v1.0\power ...

  3. 南京邮电大学java第四次实验报告

    实 验 报 告 ( 2017 / 2018学年 第2学期) 课程名称 JAVA语言程序设计 实验名称 Java集成开发环境的安装与使用. Java变量.表达式与控制结构 实验时间 2018 年 6 月 ...

  4. linux文件行首行尾添加或替换

    sed -i 's/\(^.*\)/http:\/\/www.blutmagie.de\/img\/flags\//g' cc.txt sed -i 's/\($\)/.gif/g' cc.txt

  5. 【原】无脑操作:eclipse创建maven工程时,如何修改默认JDK版本?

    问题描述:eclipse建立maven项目时,JDK版本默认是1.5,想创建时默认版本设置为1.8,如何修改? 解决方案: 找到本机maven仓库存放位置,比如:${user.home}/.m2/路径 ...

  6. Git常用命令集锦

    本篇Git命令博客主要是一些Git常用命令,适合于有一定Git或linux基础的小伙伴进行参考 1.新建文件夹 mkdir 文件夹名 2.查看目录机构: pwd 3.将文件添加至Git管理范围:git ...

  7. 英语口语练习系列-C07-谈女孩

    <将进酒>·李白 君不见黄河之水天上来,奔流到海不复回. 君不见高堂明镜悲白发,朝如青丝暮成雪. 人生得意须尽欢,莫使金樽空对月. 天生我材必有用,千金散尽还复来. 烹羊宰牛且为乐,会须一 ...

  8. jquery 选择器、筛选器、事件绑定与事件委派

    一.jQuery简介 1.可用的jQuery服务器网站:https://www.bootcdn.cn/ jQuery是一个快速的,简洁的javaScript库,使用户能更方便地处理HTMLdocume ...

  9. jpa 分页

    public Page<Stability> testPager(){ Pageable pageable = new PageRequest(1, 10, Sort.Direction. ...

  10. log4cplus 简单记录

    请注意区别对待: 1.2.1  :  不支持 C++11,比如 std::move 就会 fail. 2.0.1  :  支持 C++11,比如 std::move 就 ok. 完.