Stern-Brocot树
产生了所有分子分母互素的分数

从初始0/1 1/0 -> m/n m'/n'出发,不断往中间添加 (m+m')/(n+n')
容易推得 n * m' - m * n' = 1
证:
初始 0/1 1/0 那么1*1-0*0=1
那么假设前一次符合n * m' - m * n' = 1的性质
之后二叉树有两个方向行进,产生两种相邻 (m/n , (m+m')/(n+n')) ((m+m')/(n+n') , m'/n')
-> 左侧n*(m+m') - m*(n+n') = n*m'-m*n'=1
右侧(n+n')*m'-(m+m')*n' = n*m'-m*n = 1
所以总是不断的得到n * m' - m * n' = 1的性质

那么根据扩展欧几里得很容易得到 (n+n') , (m+m') 互质才有解,所以产生的数 (m+m')/(n+n') 必然是分子分母互素的

因为必然有整数解,很容易得知左右连接的两个数 n , n' 互质 , m m'互质 , n m 互质 , n' m'互质

同样因为(n+n')*m'-(m+m')*n' = 1
产生了所有分子分母互素的分数的证明:
m/n < (m+m')/(n+n') < m'/n' -> 这一点保证了Stern-Brocot树产生的分数是有序的
总是在两个合法分数之间产生一个合法分数,也就是说我们需要任何分数,只需要递归判断属于哪个区间,不断往树的那
一侧移动
而且每次往树底移动一步,必然会使分母变大至少1,所以求分母为n的合法分数,至多只需要往树上走n层即可

利用Stern-Brocot树思想 求解阶为n的法里级数
法里级数就是表示分母不大于n的所有分数

下面是简单的求出法里级数序列的代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
#define M 26
#define N 500000
#define ull unsigned long long
#define ll long long
const int MOD = ;
int n; void dfs(int l1 , int l2 , int r1 , int r2) //l1/l2 , r1/r2
{
if(l2+r2>n) return ;
//Stern-Brocot树 左侧总是最小的,右侧最大的,那么总是优先输入左侧,再输入中间的,最后输入右侧的数
dfs(l1 , l2 , l1+r1 , l2+r2);
cout<<l1+r1<<"/"<<l2+r2<<" ";
dfs(l1+r1 , l2+r2 , r1 , r2);
} int main() {
n = ;
cout<<"0/1 ";
dfs( , , , ); //会按从小到大的次序输出结果
cout<<"1/1"<<endl;
return ;
}

Farey series

Stern-Brocot树上节点的表示

我从单位一设为起始点

总是用一个长字符串表示从单位1 (1/1) 开始走的路径

L表示左走 , R表示右走,当前位置为S

那么用M(S) = (n n'

        m m') 的矩阵进行描述

值F(S) = (m+m')/(n+n')

往右走M(SR) = M(S) * M(R) = M(S)*(1 1

                    0 1)

往左走M(SL) = M(S) * M(L) = M(S)*(1 0

                    1 1)

对于连续的都可以用矩阵快速幂求解

如M(SRRRR) = M(S)*M(R)^4

另外求F(RS) 时 可以发现规律是 F(RS)  = F(S)+1, F(LS) = F(S)/(F(S)+1)

可以利用矩阵简单求证

Stern-Brocot树 及 法里级数分析的更多相关文章

  1. QtWebkit里RenderLayer树的绘制具体流程分析

           更新:RenderLayer树的绘制对RenderObject的绘制.同一时候补足绘制阶段的描写叙述.        QtWebkit里,QWebView,QWebPage和QWebFr ...

  2. 高级设计总监的设计方法论——5W1H需求分析法 KANO模型分析法

    本期开始进入设计方法论的学习,大湿自己也是边学边分享,算是巩固一遍吧: 另外这些理论基本都是交叉结合来应用于工作中,我们学习理论但不要拘泥于理论的框架中,掌握后要灵活运用一点- 这些理论一部分来自于我 ...

  3. 宋牧春: Linux设备树文件结构与解析深度分析(2) 【转】

    转自:https://mp.weixin.qq.com/s/WPZSElF3OQPMGqdoldm07A 作者简介 宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot.linux.ucos ...

  4. 编译原理学习笔记·语法分析(LL(1)分析法/算符优先分析法OPG)及例子详解

    语法分析(自顶向下/自底向上) 自顶向下 递归下降分析法 这种带回溯的自顶向下的分析方法实际上是一种穷举的不断试探的过程,分析效率极低,在实际的编译程序中极少使用. LL(1)分析法 又称预测分析法, ...

  5. UVALive - 8292 (法里数列)

    参考博客:zro https://blog.csdn.net/alusang/article/details/81840944 orz 给你一个分母 m 和一个浮点数 x,让你求出一个分母不超过 m ...

  6. 比特币区块结构Merkle树及简单支付验证分析

    在比特币网络中,不是每个节点都有能力储存完整的区块链数据,受限于存储空间的的限制,很多节点是以SPV(Simplified Payment Verification简单支付验证)钱包接入比特币网络,通 ...

  7. Java7里try-with-resources分析

    这个所谓的try-with-resources,是个语法糖.实际上就是自动调用资源的close()函数.和Python里的with语句差不多. 例如: [java] view plain copy   ...

  8. 高德地图API(流程法)整理分析

    [高德地图API(流程法)分析]: 前言:公司现在的网约车项目,使用的是高德地图,因为地图导航这一块的功能占比量比较大,为了方便大家对高德地图API的了解和学习使用,使用流程图把高德API分析整理了下 ...

  9. 宋牧春: Linux设备树文件结构与解析深度分析(1) 【转】

    转自:https://mp.weixin.qq.com/s/OX-aXd5MYlE_YoZ3p32qWA 作者简介 宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot.linux.ucos ...

随机推荐

  1. Linux 系统时间查看 及 时区修改(自动同步时间)

    1:使用date命令查看时区 [root@db-server ~]# date -R   Sun, 11 Jan 2015 07:10:28 -0800   [root@db-server ~]#   ...

  2. kvm相关文章

    配置KVM虚拟机的网络 Bridge和Nat方式http://www.it165.net/os/html/201503/12231.html KVM虚拟机网络配置 Bridge方式,NAT方式 htt ...

  3. PostgreSQL 8.1 中文文档(转)

    PostgreSQL 8.1 中文文档(转) http://www.php100.com/manual/PostgreSQL8/ 或者点击下面链接 PostgreSQL 8.1 中文文档

  4. Spring MVC 数据绑定(四)

        Spring支持多种形式的类型绑定,包括: 1.基本数据类型.String和String[] 2.简单对象类型 3.List类型 4.Set类型 5.Map类型 6.复合数据类型     接下 ...

  5. MySQL在windows系统中修改datadir路径后无法启动问题,报错1067

    windows server2008下如何更改MySQL数据库的目录的帖子已经很多了,这里简单介绍一个步骤,如果不成功请先查看其它帖子. 更改默认的mysql数据库目录 将 C:\Documents ...

  6. dshow,Sample Grabber 从摄像头采集

    char* CCameraDS::QueryFrame() { long evCode, size = 0; #if CALLBACKMODE static double lastSampleTime ...

  7. 为什么删不掉date模块

    显示是field pending deletion一看report里面的field list并没有xxx_date_xxx,只好跑到数据库才看到一个field_date_test当时并没有把这个字段当 ...

  8. typedef void (*funcptr)(void)

    定义一个函数指针类型.比如你有三个函数:void hello(void) { printf("你好!"); }void bye(void) { printf("再见!&q ...

  9. innodb_fast_shutdown中值为1或者2的区别是?

    innodb_fast_shutdown=0 , 1 , 2时的意思分别是 0 把buffer pool中的脏页刷到磁盘和合并insert buffer,当然包括redo log也会写到磁盘中. 2 ...

  10. Lecture Notes: Macros

    原论文链接失效,特在这里保存一份 http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html Lisp functions take Lisp values ...