libsvm的核函数类型(svmtrain.c注释部分):

"-t kernel_type : set type of kernel function (default 2)\n"
"    0 -- linear: u'*v\n"
"    1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
"    2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
"    3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
"    4 -- precomputed kernel (kernel values in training_instance_matrix)\n

linear:线性核函数(linear kernel)
polynomial:多项式核函数(ploynomial kernel)
RBF:径向基核函数(radical basis function)
sigmoid: 神经元的非线性作用函数核函数(Sigmoid tanh)
precomputed :用户自定义核函数
究竟用哪一种核函数取决对数据处理的要求,不过建议一般都是使用RBF核函数。因为RBF核函数具有良好的性态,在实际问题中表现出了良好的性能。

下面来考虑这样一种情况,给定m个训练样本,每一个对应一个特征向量。那么,我们可以将任意两个带入中,计算得到。i可以从1到m,j可以从1到m,这样可以计算出m*m的核函数矩阵(Kernel Matrix)。为了方便,我们将核函数矩阵和都使用来表示。

如果假设是有效地核函数,那么根据核函数定义

可见,矩阵K应该是个对称阵。

自定义核函数时,使用-t 4参数后,需要根据核函数给出核矩阵即可。比如:线性核函数是 K(x,x') = (x * x'),设训练集是train_data,设训练集有150个样本, 测试集是test_data,设测试集有120个样本。
训练集的核矩阵是 ktrain1 = train_data*train_data'
测试集的核矩阵是 ktest1 = test_data*train_data'
想要使用-t 4参数还需要把样本的序列号放在核矩阵前面 ,形成一个新的矩阵。然后使用svmtrain建立支持向量机,再使用svmpredict进行预测即可。形式与使用其他-t参数稍有不同,如下。

clear;
clc; %%
load heart_scale.mat;
% Split Data
train_data = heart_scale_inst(:,:);
train_label = heart_scale_label(:,:);
test_data = heart_scale_inst(:,:);
test_label = heart_scale_label(:,:); %% Linear Kernel
model_linear = svmtrain(train_label, train_data, '-t 0');
[predict_label_L, accuracy_L, dec_values_L] = svmpredict(test_label, test_data, model_linear); %% Precomputed Kernel One
% 使用的核函数 K(x,x') = (x * x')
% 核矩阵
ktrain1 = train_data*train_data';
Ktrain1 = [(:)',ktrain1];
model_precomputed1 = svmtrain(train_label, Ktrain1, '-t 4');
ktest1 = test_data*train_data';
Ktest1 = [(:)', ktest1];
[predict_label_P1, accuracy_P1, dec_values_P1] = svmpredict(test_label, Ktest1, model_precomputed1);
% 这样得到的结果和上步中使用LibSVM提供的线性核得到的结果相同。 %% Precomputed Kernel Two
% 使用的核函数 K(x,x') = ||x|| * ||x'||
% 核矩阵
ktrain2 = ones(,);
for i = :
for j = :
ktrain2(i,j) = sum(train_data(i,:).^)^0.5 * sum(train_data(j,:).^)^0.5;
end
end
Ktrain2 = [(:)',ktrain2];
model_precomputed2 = svmtrain(train_label, Ktrain2, '-t 4'); ktest2 = ones(,);
for i = :
for j = :
ktest2(i,j) = sum(test_data(i,:).^)^0.5 * sum(train_data(j,:).^)^0.5;
end
end
Ktest2 = [(:)', ktest2];
[predict_label_P2, accuracy_P2, dec_values_P2] = svmpredict(test_label, Ktest2, model_precomputed2); %% Precomputed Kernel Three
% 使用的核函数 K(x,x') = (x * x') / ||x|| * ||x'||
% 核矩阵
ktrain3 = ones(,);
for i = :
for j = :
ktrain3(i,j) = ...
train_data(i,:)*train_data(j,:)'/(sum(train_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5);
end
end
Ktrain3 = [(:)',ktrain3];
model_precomputed3 = svmtrain(train_label, Ktrain3, '-t 4'); ktest3 = ones(,);
for i = :
for j = :
ktest3(i,j) = ...
test_data(i,:)*train_data(j,:)'/(sum(test_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5);
end
end
Ktest3 = [(:)', ktest3];
[predict_label_P3, accuracy_P3, dec_values_P3] = svmpredict(test_label, Ktest3, model_precomputed3);

函数的正确选取依赖产生分类问题的实际问题的特点,因为不同的实际问题对相似程度有着不同的度量,核函数可以看作一个特征提取的过程,选择正确的核函数有助于提高分类准确率。核函数的构造可以直接构造,也可以通过变换来得到。

6.LibSVM核函数的更多相关文章

  1. libsvm参数学习和核函数使用(转载)

    一.参数说明 English libsvm_options: -s svm_type : set type of SVM (default 0) 0 -- C-SVC        1 -- nu-S ...

  2. Libsvm自定义核函数【转】

    1. 使用libsvm工具箱时,可以指定使用工具箱自带的一些核函数(-t参数),主要有: -t kernel_type : set type of kernel function (default 2 ...

  3. libSVM简介及核函数模型选择

    1. libSVM简介 训练模型的结构体 struct svm_problem //储存参加计算的所有样本 { int l; //记录样本总数 double *y; //指向样本类别的组数 struc ...

  4. libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择

    直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...

  5. libsvm下的windows版本中的工具的使用

    下载的libsvm包里面已经为我们编译好了(windows).进入libsvm\windows,可以看到这几个exe文件: a.svm-toy.exe:图形界面,可以自己画点,产生数据等. b.svm ...

  6. LibSVM for Python 使用

    经历手写SVM的惨烈教训(还是太年轻)之后,我决定使用工具箱/第三方库 Python libsvm的GitHub仓库 LibSVM是开源的SVM实现,支持C, C++, Java,Python , R ...

  7. libsvm简介和函数调用参数说明

    1.      libSVM简介 libSVM是台湾林智仁(Chih-Jen Lin) 教授2001年开发的一套支持向量机库,这套库运算速度挺快,可以很方便的对数据做分类或回归.由于libSVM程序小 ...

  8. libsvm 训练后的模型参数讲解(转)

    主要就是讲解利用libsvm-mat工具箱建立分类(回归模型)后,得到的模型model里面参数的意义都是神马?以及如果通过model得到相应模型的表达式,这里主要以分类问题为例子.测试数据使用的是li ...

  9. SVM学习笔记(一):libsvm参数说明(转)

    LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...

随机推荐

  1. shell运算符

    原生bash不支持简单的数学运算,但是可以通过其他命令来实现,例如 awk 和 expr,expr 最常用. expr 是一款表达式计算工具,使用它能完成表达式的求值操作. #!/bin/bash v ...

  2. ASP.NET Core 1.1.0 Release Notes

    ASP.NET Core 1.1.0 Release Notes We are pleased to announce the release of ASP.NET Core 1.1.0! Antif ...

  3. 使用C/C++写Python模块

    最近看开源项目时学习了一下用C/C++写python模块,顺便把学习进行一下总结,废话少说直接开始: 环境:windows.python2.78.VS2010或MingW 1 创建VC工程 (1) 打 ...

  4. 原生javascript 固定表头原理与源码

    我在工作中需要固定表头这个功能,我不想去找,没意思.于是就写了一个,我写的是angularjs 自定义指令 起了个 "fix-header" ,有人叫  "freeze- ...

  5. Spark踩坑记——初试

    [TOC] Spark简介 整体认识 Apache Spark是一个围绕速度.易用性和复杂分析构建的大数据处理框架.最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apach ...

  6. 前端性能优化的另一种方式——HTTP2.0

    最近在读一本书叫<web性能权威指南>谷歌公司高性能团队核心成员的权威之作. 一直听说HTTP2.0,对此也仅仅是耳闻,没有具体研读过,这次正好有两个篇章,分别讲HTTP1.1和HTTP2 ...

  7. FFmpeg + SoundTouch实现音频的变调变速

    本文使用FFmpeg + SoundTouch实现将音频解码后,进行变调变速处理,并将处理后的结果保存为WAV文件. 主要有以下内容: 实现一个FFmpeg的工具类,保存多媒体文件所需的解码信息 将解 ...

  8. bzoj3207--Hash+主席树

    题目大意: 给定一个n个数的序列和m个询问(n,m<=100000)和k,每个询问包含k+2个数字:l,r,b[1],b[2]...b[k],要求输出b[1]~b[k]在[l,r]中是否出现. ...

  9. python10作业思路及源码:类Fabric主机管理程序开发(仅供参考)

    类Fabric主机管理程序开发 一,作业要求 1, 运行程序列出主机组或者主机列表(已完成) 2,选择指定主机或主机组(已完成) 3,选择主机或主机组传送文件(上传/下载)(已完成) 4,充分使用多线 ...

  10. 机器指令翻译成 JavaScript —— No.4 动态跳转

    上一篇,我们用模拟流程的方式,解决了跳转问题. 不过静态跳转,好歹事先是知道来龙去脉的.而动态跳转,只有运行时才知道要去哪.既然流程都是未知的,翻译从何谈起? 动态跳转,平时出现的多吗?非常多!除了 ...