codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图
1 second
256 megabytes
standard input
standard output
After Vitaly was expelled from the university, he became interested in the graph theory.
Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.
Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.
Two ways to add edges to the graph are considered equal if they have the same sets of added edges.
Since Vitaly does not study at the university, he asked you to help him with this task.
The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.
Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.
It is guaranteed that the given graph doesn't contain any loops and parallel edges. The graph isn't necessarily connected.
Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.
4 4
1 2
1 3
4 2
4 3
1 2
3 3
1 2
2 3
3 1
0 1
3 0
3 1
The simple cycle is a cycle that doesn't contain any vertex twice.
题意:
给出一个图,无重边和自环
设t为要加的最小的边数,使得图有奇数个节点的环,环中的每一个节点只经过一次
设w为加满足条件的t条边的方案数
输出t w
思路:
考虑这个图的每一个节点的度deg
1.最大的度 = 0,说明图没有边,图的最长路为0,那么
t = 3,w = C(n,3)
2.最大的度 = 1,说明图的最长路为1,那么
t = 2,w = m * (n - 2)
3.最大的度 > 1,说明图的最长路>1,那么
(1).如果原图有奇数个节点的环,那么
t = 0,w = 1
(2).如果原图没有奇数个节点的环,那么
t = 1,w = ?
如何判断原图有没有奇数个节点的环呢?
我们发现,
如果原图没有奇数个节点的环,那么原图就是一个2分图
如果原图有奇数个节点的环,那么原图就不是一个2分图
所以用染色法就可以知道原图是不是一个2分图啦
那上面讨论中的?的值是多少呢?
当原图是一个2分图的时候,
对于图的每一个联通分量,我们把这个联通分量的节点分成了2部分,
分别有x,y个节点,那么ans += C(x,2) + C(y,2)
注意,
是对每一个联通分量,分别得到x,y,然后更新ans
而不是对整个图求x,y
因为对于我们选择加入的这一条边的2个端点,一定是要在同一个联通分量中的
代码:
//File Name: cf557D.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年07月08日 星期五 20时38分29秒 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <queue> #define LL long long using namespace std; const int MAXN = + ; int deg[MAXN];
int is[MAXN];
bool flag;
queue<int> que; struct Edge{
int to,next;
}edge[MAXN << ];
int head[MAXN],tot; void init(){
memset(head,-,sizeof head);
tot = ;
memset(deg,,sizeof deg);
} void addedge(int u,int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} void dfs(int p,int u,int x){
is[u] = x;
que.push(u);
for(int i=head[u];~i;i=edge[i].next){
int v = edge[i].to;
if(v == p)
continue;
if(is[v] == x){
flag = false;
return ;
}
else if(is[v] == -)
dfs(u,v,x ^ );
}
} void solve(int n,int m){
LL ans;
int ma = -;
for(int i=;i<=n;i++)
ma = max(deg[i],ma);
if(ma == ){
ans = (LL)n * (n - ) * (n - ) / ;
cout << "3 " << ans << endl;
}
else if(ma == ){
ans = (LL)m * (n - );
cout << "2 " << ans << endl;
}
else{
ans = ;
memset(is,-,sizeof is);
flag = true;
while(!que.empty())
que.pop();
for(int i=;i<=n;i++){
if(is[i] == -){
dfs(-,i,);
int x = ,y = , u;
while(!que.empty()){
u = que.front();
que.pop();
if(is[u] == ) x++;
else y++;
}
ans += (LL)x * (x - ) / + (LL)y * (y - ) / ;
}
}
if(!flag)
cout << "0 1" << endl;
else
cout << "1 " << ans << endl;
}
return ;
} int main(){
int n,m;
while(~scanf("%d %d",&n,&m)){
init();
for(int i=,u,v;i<m;i++){
scanf("%d %d",&u,&v);
addedge(u,v);
deg[u]++;
deg[v]++;
}
solve(n,m);
}
return ;
}
codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图的更多相关文章
- 【34.57%】【codeforces 557D】Vitaly and Cycle
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 图论
D. Vitaly and Cycle Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/557/p ...
- CodeForces - 557D Vitaly and Cycle(二分图)
Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 奇环
题目链接: 点这里 题目 D. Vitaly and Cycle time limit per test1 second memory limit per test256 megabytes inpu ...
- Codeforces Round #311 (Div. 2) D - Vitaly and Cycle
D. Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard ...
- HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)
Divide Groups Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- Java实现 LeetCode 785 判断二分图(分析题)
785. 判断二分图 给定一个无向图graph,当这个图为二分图时返回true. 如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我 ...
- codeforces 557D Vitaly and Cycle
题意简述 给定一个图 求至少添加多少条边使得它存在奇环 并求出添加的方案数 (注意不考虑自环) ---------------------------------------------------- ...
- Codeforces Round #311 (Div. 2) D - Vitaly and Cycle(二分图染色应用)
http://www.cnblogs.com/wenruo/p/4959509.html 给一个图(不一定是连通图,无重边和自环),求练成一个长度为奇数的环最小需要加几条边,和加最少边的方案数. 很容 ...
随机推荐
- 黑马程序员——JAVA基础之JDK1.5新特性高级for循环和可变参数
------- android培训.java培训.期待与您交流! ---------- 高级for循环 格式: for(数据类型 变量名 : 被遍历的集合(Collection)或者数组) { ...
- java的nio之:java的nio系列教程之SocketChannel
Java NIO中的SocketChannel是一个连接到TCP网络套接字的通道.可以通过以下2种方式创建SocketChannel: 打开一个SocketChannel并连接到互联网上的某台服务器. ...
- java基础之:匿名内部类
在java提高篇-----详解内部类中对匿名内部类做了一个简单的介绍,但是内部类还存在很多其他细节问题,所以就衍生出这篇博客.在这篇博客中你可以 了解到匿名内部类的使用.匿名内部类要注意的事项.如何初 ...
- 【android极光推送】—从客户端到后台,一文通吃
sion android:name="android.permission.VIBRATE" /> <uses-permission android:name=&quo ...
- Xcode 7安装KSImageNamed失败解决方法
## How do I use it? Build the KSImageNamed target in the Xcode project and the plug-in will automati ...
- HTML兼容性设置
今天碰到了兼容性问题,页面显示空白,打开调试界面,显示信息 “Compatibility View because 'Display intranet sites in Compatibility V ...
- Web前端开发笔试&面试_04
>>XDL: 1.在CSS中,选择器的优先级?(如important,id,class 这些……) 2.如何消除行内间隙? Inline-block 3. 如何清除浮动? —— 4. CS ...
- 从代码看 asp.net 处理过程
从这里开始 先是一个 对Com接口的导入. /// <internalonly/> /// <devdoc> /// </devdoc> [C ...
- maxsdk sample中3dsexp.rc点不开并提示specstrings.h中找不到sal.h解法
在网上下载sal.h文件并拷贝到specstrings.h所在目录(C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Include)即可. sa ...
- 【转】Android Drawable Resource学习(十一)、RotateDrawable
对另一个drawable资源,基于当前的level,进行旋转的drawable. 文件位置: res/drawable/filename.xml文件名即资源名 编译数据类型: 指向 RotateDra ...