D. Vitaly and Cycle
 
 
 
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

After Vitaly was expelled from the university, he became interested in the graph theory.

Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.

Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.

Two ways to add edges to the graph are considered equal if they have the same sets of added edges.

Since Vitaly does not study at the university, he asked you to help him with this task.

Input

The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.

Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.

It is guaranteed that the given graph doesn't contain any loops and parallel edges. The graph isn't necessarily connected.

Output

Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.

Examples
Input
4 4
1 2
1 3
4 2
4 3
Output
1 2
Input
3 3
1 2
2 3
3 1
Output
0 1
Input
3 0
Output
3 1
Note

The simple cycle is a cycle that doesn't contain any vertex twice.

题意:

给出一个图,无重边和自环

设t为要加的最小的边数,使得图有奇数个节点的环,环中的每一个节点只经过一次

设w为加满足条件的t条边的方案数

输出t w

思路:

考虑这个图的每一个节点的度deg

1.最大的度 = 0,说明图没有边,图的最长路为0,那么

  t = 3,w = C(n,3)

2.最大的度 = 1,说明图的最长路为1,那么

  t = 2,w = m * (n - 2)

3.最大的度 > 1,说明图的最长路>1,那么

  (1).如果原图有奇数个节点的环,那么

    t = 0,w = 1

  (2).如果原图没有奇数个节点的环,那么

    t = 1,w = ?

如何判断原图有没有奇数个节点的环呢?

我们发现,

如果原图没有奇数个节点的环,那么原图就是一个2分图

如果原图有奇数个节点的环,那么原图就不是一个2分图

所以用染色法就可以知道原图是不是一个2分图啦

那上面讨论中的?的值是多少呢?

当原图是一个2分图的时候,

对于图的每一个联通分量,我们把这个联通分量的节点分成了2部分,

分别有x,y个节点,那么ans += C(x,2) + C(y,2)

注意,

是对每一个联通分量,分别得到x,y,然后更新ans

而不是对整个图求x,y

因为对于我们选择加入的这一条边的2个端点,一定是要在同一个联通分量中的

代码:

  //File Name: cf557D.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年07月08日 星期五 20时38分29秒 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <queue> #define LL long long using namespace std; const int MAXN = + ; int deg[MAXN];
int is[MAXN];
bool flag;
queue<int> que; struct Edge{
int to,next;
}edge[MAXN << ];
int head[MAXN],tot; void init(){
memset(head,-,sizeof head);
tot = ;
memset(deg,,sizeof deg);
} void addedge(int u,int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} void dfs(int p,int u,int x){
is[u] = x;
que.push(u);
for(int i=head[u];~i;i=edge[i].next){
int v = edge[i].to;
if(v == p)
continue;
if(is[v] == x){
flag = false;
return ;
}
else if(is[v] == -)
dfs(u,v,x ^ );
}
} void solve(int n,int m){
LL ans;
int ma = -;
for(int i=;i<=n;i++)
ma = max(deg[i],ma);
if(ma == ){
ans = (LL)n * (n - ) * (n - ) / ;
cout << "3 " << ans << endl;
}
else if(ma == ){
ans = (LL)m * (n - );
cout << "2 " << ans << endl;
}
else{
ans = ;
memset(is,-,sizeof is);
flag = true;
while(!que.empty())
que.pop();
for(int i=;i<=n;i++){
if(is[i] == -){
dfs(-,i,);
int x = ,y = , u;
while(!que.empty()){
u = que.front();
que.pop();
if(is[u] == ) x++;
else y++;
}
ans += (LL)x * (x - ) / + (LL)y * (y - ) / ;
}
}
if(!flag)
cout << "0 1" << endl;
else
cout << "1 " << ans << endl;
}
return ;
} int main(){
int n,m;
while(~scanf("%d %d",&n,&m)){
init();
for(int i=,u,v;i<m;i++){
scanf("%d %d",&u,&v);
addedge(u,v);
deg[u]++;
deg[v]++;
}
solve(n,m);
}
return ;
}

codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图的更多相关文章

  1. 【34.57%】【codeforces 557D】Vitaly and Cycle

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  2. Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 图论

    D. Vitaly and Cycle Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/557/p ...

  3. CodeForces - 557D Vitaly and Cycle(二分图)

    Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  4. Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 奇环

    题目链接: 点这里 题目 D. Vitaly and Cycle time limit per test1 second memory limit per test256 megabytes inpu ...

  5. Codeforces Round #311 (Div. 2) D - Vitaly and Cycle

    D. Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard ...

  6. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  7. Java实现 LeetCode 785 判断二分图(分析题)

    785. 判断二分图 给定一个无向图graph,当这个图为二分图时返回true. 如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我 ...

  8. codeforces 557D Vitaly and Cycle

    题意简述 给定一个图 求至少添加多少条边使得它存在奇环 并求出添加的方案数 (注意不考虑自环) ---------------------------------------------------- ...

  9. Codeforces Round #311 (Div. 2) D - Vitaly and Cycle(二分图染色应用)

    http://www.cnblogs.com/wenruo/p/4959509.html 给一个图(不一定是连通图,无重边和自环),求练成一个长度为奇数的环最小需要加几条边,和加最少边的方案数. 很容 ...

随机推荐

  1. 输入DStream和Receiver详解

    输入DStream代表了来自数据源的输入数据流.在之前的wordcount例子中,lines就是一个输入DStream(JavaReceiverInputDStream),代表了从netcat(nc) ...

  2. Vue.js相关知识1

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  3. hdu3594 强连通(仙人掌图)

    题意:给定一张有向图,问是否是仙人掌图.仙人掌图的定义是,首先,这张图是一个强连通分量,其次所有边在且仅在一个环内. 首先,tarjan可以判强连通分量是否只有一个.然后对于所有边是否仅在一个环内,我 ...

  4. canvas绘图动画细节

    1.canvas动画不能像操作DOM那样修改一个元素的top和left值就能移动.canvas要移动一个元素需要重绘,在重绘的时候修改相应的值.将绘制的图形封装成一个函数,这样才方便重绘.2.在重绘的 ...

  5. Android度量单位说明(DIP,DP,PX,SP)

    本文转载于:http://blog.sina.com.cn/s/blog_6b26569e0100xw6d.html (一)概念 dip: device independent pixels(设备独立 ...

  6. jquery layer弹窗弹层插件 小巧强大

    /* 先去官网下载最新的js  http://sentsin.com/jquery/layer/ ①引用jquery ②引用layer.min.js */ 触发弹层的事件可自由绑定,如: $('#id ...

  7. 全文检索引擎 Lucene.net

    全文搜索引擎是目前广泛应用的主流搜索引擎.它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行 ...

  8. 虚拟化之esxi命令行管理之二

    /vmfs # ls -l lrwxrwxrwx 1 root root 4 Mar 23 2013 devices -> /dev drwxr-xr-x 1 root root 512 Sep ...

  9. Android视录视频示例

    这几天需要搞一个Android视频通话功能,从最简单的视频录制开始,网上例子大多不完整.下面的示例参考过别人的代码,还是拿出来给需要的朋友分享下. Activity类:VideoActivity pa ...

  10. 墨刀 手机app原型工具

    https://modao.io 并且墨刀对开放项目永久免费!