从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤:

1.输入(input):将输入数据分成一个个split,并将split进一步拆成<key, value>。

2.映射(map):根据输入的<key, value>进生处理,

3.合并(combiner):合并中间相两同的key值。

4.分区(Partition):将<key, value>分成N分,分别送到下一环节。

5.化简(Reduce):将中间结果合并,得到最终结果

6.输出(output):负责输入最终结果。

其中第3、4步又成洗牌(shuffle)过程。

从前面HelloWorld示例中,我们看到,我们只去个性化了Map和Reduce函数,那其他函数呢,是否可以个性化?答案当然是肯定的。下面我们就对每个环节的个性化进行介绍。

自定义输入格式

输 入格式(InputFormat)用于描述整个MapReduce作业的数据输入规范。先对输入的文件进行格式规范检查,如输入路径,后缀等检查;然后对 数据文件进行输入分块(split);再对数据块逐一读出;最后转换成Map所需要的<key, value>健值对。

系统中提供丰富的预置输入格式。最常用的以下两种:

TextInputFormat:系统默认的数据输入格式。将文件分块,并逐行读入,每一行记录行成一对<key, value>。其中,key值为当前行在整个文件中的偏移量,value值为这一行的文本内容。

KeyValueTextInputFormat:这是另一个常用的数据输入格式,读入的文本文件内容要求是以<key, value>形式。读出的结果也就直接形成<key, value>送入map函数中。

如果选择输入格式呢?那就只要在job函数中调用

1
job.setInputFormatClass(TextInputFormat.class);

在Hello中我们没有设定,系统默认选择了TextInputFormat。

一般情况够用了,但某些情况下,还是无法满足用户的需求,所以还是需要个性化。个性化则按下面的方式进行:

如果数据我们是来源于文件,则可以继承FileInputFormat:

1
2
3
4
5
6
7
8
public class MyInputFormat extends FileInputFormat<Text,Text> {
   @Override
   public RecordReader<Text, Text> createRecordReader(InputSplit split,
         TaskAttemptContext context) throws IOException, InterruptedException {
      // TODO Auto-generated method stub
      return null;
   }
}

如果数据我们是来源于非文件,如关系数据,则继承

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class MyInputFormat extends InputFormat<Text,Text> {
   @Override
   public RecordReader<Text, Text> createRecordReader(InputSplit arg0,
         TaskAttemptContext arg1) throws IOException, InterruptedException {
      // TODO Auto-generated method stub
      return null;
   }
   @Override
   public List<InputSplit> getSplits(JobContext arg0) throws IOException,
         InterruptedException {
      // TODO Auto-generated method stub
      return null;
   }
}

这里比较清晰了,下面个函数为拆分成split,上面个函数跟据split输出成Key,value。

自定义map处理

这个好理解,我们的HelloWorld程序中就自定义了map处理函数。然后在job中指定了我们的处理类:

1
job.setMapperClass(TokenizerMapper.class);

能不能没有map呢? 可以的,如果没有map,也就是这与上面的这个setMapperClass,则系统自动指定一个null,这时处理是将输入的<key,value>值,不作任何修改,直接送到下一环节中。

个性化代码如下:

1
2
3
4
5
6
7
public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
        context.write(key, value);
    }
  }

自定义合并Combiner

自定义合并Combiner类,主要目的是减少Map阶段输出中间结果的数据量,降低数据的网络传输开销。

Combine 过程,实际跟Reduce过程相似,只是执行不同,Reduce是在Reducer环节运行,而Combine是紧跟着Map之后,在同一台机器上预先将 结时进行一轮合并,以减少送到Reducer的数据量。所以在HelloWorld时,可以看到,Combiner和Reducer用的是同一个类:

1
2
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);

如何个性化呢,这个跟Reducer差不多了:

1
2
3
4
5
6
7
8
public static class MyCombiner
      extends Reducer<Text,IntWritable,Text,IntWritable> {
   public void reduce(Text key, Iterable<IntWritable> values,
                      Context context
                      ) throws IOException, InterruptedException {
     context.write(key, new IntWritable(1));
   }
 }

自定义分区Partitioner

在 MapReduce程序中,Partitioner决定着Map节点的输出将被分区到哪个Reduce节点。而默认的Partitioner是 HashPartitioner,它根据每条数据记录的主健值进行Hash操作,获得一个非负整数的Hash码,然后用当前作业的Reduce节点数取模 运算,有N个结点的话,就会平均分配置到N个节点上,一个隔一个依次。大多情况下这个平均分配是够用了,但也会有一些特殊情况,比如某个文件的,不能被拆 开到两个结点中,这样就需要个性化了。

个性化方式如下:

1
2
3
4
5
6
public static class MyPartitioner
      extends HashPartitioner<K,V> {
   public void getPartition(K key, V value,int numReduceTasks) {
     super.getPartition(key,value,numReduceTasks);
   }
 }

方式其实就是在执行之前可以改变一下key,来欺骗这个hash表。

自定义化简(Reducer)

这一块是将Map送来的结果进行化简处理,并形成最终的输出值。与前面map一样,在HelloWorld中我们就见到过了。通过下面代码可以设置其值:

1
job.setReducerClass(IntSumReducer.class);

同样,也可以这样类可以不设置,如果不设置的话,就是把前面送来的值,直接送向输出格式器中。

如果要个性化,则如下:

1
2
3
4
5
6
7
8
  public static class IntSumReducer
     extends Reducer<Text,IntWritable,Text,IntWritable> {
  public void reduce(Text key, Iterable<IntWritable> values,
                     Context context
                     ) throws IOException, InterruptedException {
    context.write(key, result);
  }
}

自定义输出格式

数 据输出格式(OutPutFormat)用于描述MapReduce作业的数据输出规范。Hadoop提供了丰富的内置数据输出格式。最常的数据输出格式 是TextOutputFormat,也是系统默认的数据输出格式,将结果以"key+\t+value"的形式逐行输出到文本文件中。还有其它的, 如:DBOutputFormat,FileOutputFormat,FilterOutputFormat,IndexUpdataOutputFormat,LazyOutputFormat,MapFileOutputFormat, 等等。

如果要个性化,则按下面方式进行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class MyOutputFormat extends OutputFormat<Text,Text> {
   @Override
   public void checkOutputSpecs(JobContext arg0) throws IOException,
         InterruptedException {
      // TODO Auto-generated method stub
   }
   @Override
   public OutputCommitter getOutputCommitter(TaskAttemptContext arg0)
         throws IOException, InterruptedException {
      // TODO Auto-generated method stub
      return null;
   }
   @Override
   public RecordWriter<Text, Text> getRecordWriter(TaskAttemptContext arg0)
         throws IOException, InterruptedException {
      // TODO Auto-generated method stub
      return null;
   }
}

复合健——用户自定义类型。

从前面的整个过程中可以看到,都是采用key-value的方式进行传入传出,而这些类型大多是单一的字符串,和整型。如果我的key中需要包含多个信息怎么办?用字符串直接拼接么? 太不方便了,最好能够自己定义一个类,作为这个key,这样就方便了。 如果定义一个类作为key 或value的类型? 有什么要求?就是这个类型必须要继承WritableComparable<T>这个类,所以如果要自定义一个类型则可以这么实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class MyType implements WritableComparable<MyType> {
   private float x,y;
   public float GetX(){return x;}
   public float GetY(){return y;}
      @Override
      public void readFields(DataInput in) throws IOException {
         x = in.readFloat();
         y = in.readFloat();
      }
      @Override
      public void write(DataOutput out) throws IOException {
         out.writeFloat(x);
         out.writeFloat(y);
      }
      @Override
      public int compareTo(MyType arg0) {
         //输入:-1(小于) 0(等于) 1(大于)
         return 0;
      }
   }

这个示例中,我们添加了两个float变量:x,y 。 这个信息能过int 和out按次序进行输入输出。最后,再实现一个比较函数即可。

Job任务的创建

1
2
3
4
5
6
7
8
9
10
11
12
Job job = new Job(conf, "word count");
   job.setJarByClass(WordCount.class);
   job.setInputFormatClass(MyInputFormat.class);
   job.setMapperClass(TokenizerMapper.class);
   job.setCombinerClass(IntSumReducer.class);
   job.setPartitionerClass(MyPartitioner.class);
   job.setReducerClass(IntSumReducer.class);
   job.setOutputFormatClass(TextOutputFormat.class);
   job.setOutputKeyClass(Text.class);
   job.setOutputValueClass(IntWritable.class);
   FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
   FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

任务创建比较容易,其实就是new一个实例,然后把上面描述的过程类设置好,然后加上第2行中,jar包的主类,第10、11行的输入输出路径。这样就完事了。

Job任务的执行

单个任务的执行,没有什么问题,可以用这个:

1
job.waitForCompletion(true);

但多个任务呢? 多个任务的话,就会形成其组织方式,有串行,有并行,有无关,有组合的,如下图:

图中,Job2和Job3将会等Job1执行完了再执行,且可以同时开始,而Job4必须等Job2和Job3同时结束后才结束。

这个组合,就可以采用这样的代码来实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Configuration conf = new Configuration();
      Job job1 = new Job(conf, "job1");
      //.. config Job1
      Job job2 = new Job(conf, "job2");
      //.. config Job2
      Job job3 = new Job(conf, "job3");
      //.. config Job3
      Job job4 = new Job(conf, "job4");
      //.. config Job4
      //添加依赖关系
      job2.addDependingJob(job1);
      job3.addDependingJob(job1);
      job4.addDependingJob(job2);
      job4.addDependingJob(job3);
      JobControl jc = new JobControl("jbo name");
      jc.addJob(job1);
      jc.addJob(job2);
      jc.addJob(job3);
      jc.addJob(job4);
      jc.run();

总述

现在回头看看,其实整个hadoop编程,也就是这几块内容了,要实现某个功能,我们就往上面这些步骤上套,然后联起来执行,达到我们的目的。

Hadoop基础教程之高级编程的更多相关文章

  1. [转]《Hadoop基础教程》之初识Hadoop

    原文地址:http://blessht.iteye.com/blog/2095675 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不 ...

  2. 《Hadoop基础教程》之初识Hadoop

    Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. <Hadoop基础教程> ...

  3. [转载] 《Hadoop基础教程》之初识Hadoop

    转载自http://blessht.iteye.com/blog/2095675 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用 ...

  4. <<Hadoop基础教程》之初识Hadoop【转】

    Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. <Hadoop基础教程> ...

  5. 《Hadoop基础教程》之初识Hadoop(转载)

    转载自博主:上善若水任方圆http://blessht.iteye.com/blog/2095675 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴 ...

  6. 《Hadoop基础教程》之初识Hadoop 【转】

    Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. <Hadoop基础教程> ...

  7. Hadoop学习笔记(7) ——高级编程

    Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成 ...

  8. Java基础教程:网络编程

    Java基础教程:网络编程 基础 Socket与ServerSocket Socket又称"套接字",网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个s ...

  9. 【Hadoop基础教程】4、Hadoop之完全分布式环境搭建

    上一篇blog我们完成了Hadoop伪分布式环境的搭建,伪分布式模式也叫单节点集群模式, NameNode.SecondaryNameNode.DataNode.JobTracker.TaskTrac ...

随机推荐

  1. 2. VS使用---HelloWorld

    摘要: ------------------------------------------------------------------------------------- 1. VS2010里 ...

  2. 设计模式之Birdge(桥接)模式

    1.出现原因 1.同一个类型,有两个变化的维度(两个维度的抽象:一个抽象部分的抽象,一个实现部分的抽象) 2.如何应对这种“多维度的变化”?如何利用面向对象技术来使得同一类型可以轻松地沿着两个方向变化 ...

  3. 11.9Daily Scrum

    人员 任务分配完成情况 明天任务分配 王皓南 实现网页上视频浏览的功能.研究相关的代码和功能.823 数据库测试 申开亮 实现网页上视频浏览的功能.研究相关的代码和功能.824 实现视频浏览的功能 王 ...

  4. C++(MFC)编程中遇到的的一些函数

    memset void memset( void dest, int c, size_t count ); dest: Pointer to destination c: Character to s ...

  5. boost之signal

    boost里的signal是一个模板类,不区分信号种类,产生信号统一用()调用操作符. 1.回调普通函数代码示例: #include <iostream> #include <str ...

  6. poj 1269 Intersecting Lines

    题目链接:http://poj.org/problem?id=1269 题目大意:给出四个点的坐标x1,y1,x2,y2,x3,y3,x4,y4,前两个形成一条直线,后两个坐标形成一条直线.然后问你是 ...

  7. R 实例1

    //转载:http://www.r-china.net/forum.php?mod=viewthread&tid=881&extra=page%3D1//用R抓取人民日报网数据 lib ...

  8. javascript实现数据结构与算法系列:线性表的静态单链表存储结构

    有时可借用一维数组来描述线性链表,这就是线性表的静态单链表存储结构. 在静态链表中,数组的一个分量表示一个结点,同时用游标(cur)代替指针指示结点在数组中的相对位置.数组的第0分量可看成头结点,其指 ...

  9. WaitForTargetFPS

    WaitForTargetFPS,是关于帧数限制的,你可能开了垂直同步,其实是防止撕裂.先说撕裂,在显示器的帧缓存会被不同步的显卡的帧缓存给替换掉,导致显示器显示到一半的时候,内存被换掉,你看到上频是 ...

  10. Python中的两种列表

    python中有两种类型的列表:其中一种是用[]创建的列表,这种列表具有伸缩性,可以动态改变,而另外一种列表是用()创建,成为元组,元组一旦创建,在任何状况下都不能再改变,是一种常量列表. movie ...