bzoj1564: [NOI2009]二叉查找树
dp。
首先这棵树是一个treap。
权值我们可以改成任意实数,所以权值只表示相互之间的大小关系,可以离散化。
树的中序遍历是肯定确定的。
用f[l][r][w]表示中序遍历为l到r,根的权值必须大于w的最小代价。
当a[x].w<=w时有f[l][r][w]=min(f[l][x-1][w]+f[x+1][r][w]+s[l][r]+k).s[i][j]表示从l到r访问次数的和。
当a[x].w>w时,还有f[l][r][w]=min(f[l][x-1][w]+f[x+1][r][w]+s[l][r]).不用修改了。
对于[1,n]来说,根的权值只存在改和不改俩种状态。所以res=min(f[1][n][0],f[1][n][1])。
必须是这俩个取min,如果只取0的话,就会忽略根为原树的根的答案。
否则就会忽略根不为原树的答案(这不是废话么。。其实因为新根能改为小于1,如果只能改为1的话,原根的权值还要变大)。
用一个res作为引用可以不用打那么一长串(膜lrj巨神)
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int maxn = 70 + 10;
const LL inf = 0x3f3f3f3f3f3f3f3fll; struct Point {
int v,w,d;
}a[maxn];
int n,k;
LL f[maxn][maxn][maxn],s[maxn],res; bool cmp1(Point p1,Point p2) {
return p1.w<p2.w;
} bool cmp2(Point p1,Point p2) {
return p1.v<p2.v;
} LL DP(int l,int r,int w) {
if(l>r) return 0;
if(f[l][r][w]!=inf) return f[l][r][w]; for(int x=l;x<=r;x++) {
LL& res=f[l][r][w];
res=min(res,DP(l,x-1,w)+DP(x+1,r,w)+s[r]-s[l-1]+k);
if(a[x].w>w)
res=min(res,DP(l,x-1,a[x].w)+DP(x+1,r,a[x].w)+s[r]-s[l-1]);
}
return f[l][r][w];
} int main() {
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i].v);
for(int i=1;i<=n;i++) scanf("%d",&a[i].w);
for(int i=1;i<=n;i++) scanf("%d",&a[i].d);
sort(a+1,a+n+1,cmp1);
for(int i=1;i<=n;i++) a[i].w=i;
sort(a+1,a+n+1,cmp2);
for(int i=1;i<=n;i++) {
a[i].v=i;
s[i]=s[i-1]+a[i].d;
}
memset(f,0x3f,sizeof(f));
printf("%lld\n",min(DP(1,n,0),DP(1,n,1)));
return 0;
}
bzoj1564: [NOI2009]二叉查找树的更多相关文章
- [BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp
1564: [NOI2009]二叉查找树 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 879 Solved: 612[Submit][Status] ...
- BZOJ1564 NOI2009二叉查找树(区间dp)
首先按数据值排序,那么连续一段区间的dfs序一定也是连续的. 将权值离散化,设f[i][j][k]为i到j区间内所有点的权值都>=k的最小代价,转移时枚举根考虑是否修改权值即可. #includ ...
- [BZOJ1564][NOI2009]二叉查找树(区间DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1564 分析: 首先因为每个点的数据值不变,所以无论树的形态如何变,树的中序遍历肯定不变 ...
- BZOJ 1564: [NOI2009]二叉查找树( dp )
树的中序遍历是唯一的. 按照数据值处理出中序遍历后, dp(l, r, v)表示[l, r]组成的树, 树的所有节点的权值≥v的最小代价(离散化权值). 枚举m为根(p表示访问频率): 修改m的权值 ...
- bzoj 1564 [NOI2009]二叉查找树 区间DP
[NOI2009]二叉查找树 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 906 Solved: 630[Submit][Status][Discu ...
- P1864 [NOI2009]二叉查找树
链接P1864 [NOI2009]二叉查找树 这题还是蛮难的--是我菜. 题目描述中的一大堆其实就是在描述\(treap.\),考虑\(treap\)的一些性质: 首先不管怎么转,中序遍历是确定的,所 ...
- NOI2009 二叉查找树 【区间dp】
[NOI2009]二叉查找树 [问题描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左子树结点的数据值大,而比它右子树结点的数据值小.另一方面,这棵查找树中每个结点都有 ...
- BZOJ 1564 :[NOI2009]二叉查找树(树型DP)
二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...
- [洛谷P1864] NOI2009 二叉查找树
问题描述 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结点的权值都比它的 ...
随机推荐
- 【ASP.Net MVC】AspNet Mvc一些总结
AspNet Mvc一些总结 RestaurantReview.cs using System; using System.Collections.Generic; using System.Comp ...
- Topcoder 多校T-shirt场
盗用名字:C题题目都没看懂, B:You are given a long long n. Return the largest divisor of n that is a perfect squa ...
- javascript笔记 面向对象
Javascript是一种面向对象的弱语言,既然有面向对象,就有继承 继承: 1.call函数和apply函数:区别在于它们参数上的不同,固定参数的用call,可变参数的用apply.换句话说,就是a ...
- codeforces 425A Sereja and Swaps(模拟,vector,枚举区间)
题目 这要学习的是如何枚举区间,vector的基本使用(存入,取出,排序等),这题的思路来自: http://www.tuicool.com/articles/fAveE3 //vector 可以用s ...
- cf div2 238 D
D. Toy Sum time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- I/O复用:异步聊天
一.I/O复用 在<TCP套接字编程>的同步聊天程序中,我们看到TCP客户同时处理两个输入:标准输入和TCP套接字.考虑在客户阻塞于标准输入fgets调用时,服务器进程被杀死,服务器TCP ...
- zoj 3057 Beans Game 博弈论
思路:三维DP,刚开始用记忆化搜索,MLE…… 后来改为直接预处理所有的情况. 总之就是必败态的后继是必胜态!!! 代码如下: #include<iostream> #include< ...
- 【poj3358】消因子+BSGS 或 消因子+欧拉定理 两种方法
题意:给你一个分数,求它在二进制下的循环节的长度,还有第一个循环节从哪一位开始. For example, x = 1/10 = 0.0001100110011(00110011)w and 0001 ...
- UITableViewCell的重用机制原理
UITableViewCell的重用机制原理 来自http://blog.csdn.net/omegayy/article/details/7356823 ====================== ...
- lintcode:最长上升子序列
题目 最长上升子序列 给定一个整数序列,找到最长上升子序列(LIS),返回LIS的长度. 样例 给出[5,4,1,2,3],这个LIS是[1,2,3],返回 3 给出[4,2,4,5,3,7],这个L ...