ALDS1_7_A-RootedTree.
Description:

A graph G = (V, E) is a data structure where V is a finite set of vertices and E is a binary relation on V represented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

node ID of u

parent of u

depth of u

node type (root, internal node or leaf)

a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (p, x), then p is the parent of x, and x is a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k c1 c2 ... ck

where id is the node ID of u, k is the degree of u, c1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output:

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = d, type, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints:

≤ n ≤ 100000

SampleInput1:

13

0 3 1 4 10

1 2 2 3

2 0

3 0

4 3 5 6 7

5 0

6 0

7 2 8 9

8 0

9 0

10 2 11 12

11 0

12 0

SampleOutput1:

node 0: parent = -1, depth = 0, root, [1, 4, 10]

node 1: parent = 0, depth = 1, internal node, [2, 3]

node 2: parent = 1, depth = 2, leaf, []

node 3: parent = 1, depth = 2, leaf, []

node 4: parent = 0, depth = 1, internal node, [5, 6, 7]

node 5: parent = 4, depth = 2, leaf, []

node 6: parent = 4, depth = 2, leaf, []

node 7: parent = 4, depth = 2, internal node, [8, 9]

node 8: parent = 7, depth = 3, leaf, []

node 9: parent = 7, depth = 3, leaf, []

node 10: parent = 0, depth = 1, internal node, [11, 12]

node 11: parent = 10, depth = 2, leaf, []

node 12: parent = 10, depth = 2, leaf, []

SampleInput2:

4

1 3 3 2 0

0 0

3 0

2 0

SampleOutput2:

node 0: parent = 1, depth = 1, leaf, []

node 1: parent = -1, depth = 0, root, [3, 2, 0]

node 2: parent = 1, depth = 1, leaf, []

node 3: parent = 1, depth = 1, leaf, []

Codes:
//#define LOCAL

#include <cstdio>

#define N -1
#define M 100010
struct Node { int p, l, r; };
Node T[M]; int A[M]; void print(int a) {
int i = 0, b = T[a].l;
printf("node %d: parent = %d, depth = %d, ", a, T[a].p, A[a]);
if(T[a].p == N) printf("root, [");
else if(T[a].l == N) printf("leaf, [");
else printf("internal node, [");
for(; b!=N; ++i, b=T[b].r) {
if(i) printf(", ");
printf("%d", b);
}
printf("]\n");
} void rec(int a, int b) {
A[a] = b;
if(T[a].r != N) rec(T[a].r, b);
if(T[a].l != N) rec(T[a].l, b+1);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, b, c, d, i, j, n, r;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].p = T[i].l = T[i].r = -1; for(i=0; i<n; ++i) {
scanf("%d%d", &a, &b);
for(j=0; j<b; ++j) {
scanf("%d", &c);
if(!j) T[a].l = c;
else T[d].r = c;
d = c; T[c].p = a;
}
}
for(i=0; i<n; ++i) {
if(T[i].p == N) { r = i; break; }
} rec(r, 0);
for(i=0; i<n; ++i) print(i); return 0;
}
ALDS1_7_B-BinaryTree.
Description:

A rooted binary tree is a tree with a root node in which every node has at most two children.

Your task is to write a program which reads a rooted binary tree T and prints the following information for each node u of T:

node ID of u

parent of u

sibling of u

the number of children of u

depth of u

height of u

node type (root, internal node or leaf)

If two nodes have the same parent, they are siblings. Here, if u and v have the same parent, we say u is a sibling of v (vice versa).

The height of a node in a tree is the number of edges on the longest simple downward path from the node to a leaf.

Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node is given in the following format:

id left right

id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1.

Output:

Print the information of each node in the following format:

node id: parent = p , sibling = s , degree = deg, depth = dep, height = h, type

p is ID of its parent. If the node does not have a parent, print -1.

s is ID of its sibling. If the node does not have a sibling, print -1.

deg, dep and h are the number of children, depth and height of the node respectively.

type is a type of nodes represented by a string (root, internal node or leaf. If the root can be considered as a leaf or an internal node, print root.

Please follow the format presented in a sample output below.

Constraints:

1 ≤ n ≤ 25

SampleInput:

9

0 1 4

1 2 3

2 -1 -1

3 -1 -1

4 5 8

5 6 7

6 -1 -1

7 -1 -1

8 -1 -1

SampleOutput:

node 0: parent = -1, sibling = -1, degree = 2, depth = 0, height = 3, root

node 1: parent = 0, sibling = 4, degree = 2, depth = 1, height = 1, internal node

node 2: parent = 1, sibling = 3, degree = 0, depth = 2, height = 0, leaf

node 3: parent = 1, sibling = 2, degree = 0, depth = 2, height = 0, leaf

node 4: parent = 0, sibling = 1, degree = 2, depth = 1, height = 2, internal node

node 5: parent = 4, sibling = 8, degree = 2, depth = 2, height = 1, internal node

node 6: parent = 5, sibling = 7, degree = 0, depth = 3, height = 0, leaf

node 7: parent = 5, sibling = 6, degree = 0, depth = 3, height = 0, leaf

node 8: parent = 4, sibling = 5, degree = 0, depth = 2, height = 0, leaf

Codes:
//#define LOCAL

#include <cstdio>

#define MAX 10000
#define NIL -1
struct Node { int parent, left, right; };
Node T[MAX]; int n, D[MAX], H[MAX]; void setDepth(int u, int d) {
if(u == NIL) return;
D[u] = d;
setDepth(T[u].left, d+1);
setDepth(T[u].right, d+1);
} int setHeight(int u) {
int h1 = 0, h2 = 0;
if(T[u].left != NIL) h1 = setHeight(T[u].left)+1;
if(T[u].right != NIL) h2 = setHeight(T[u].right)+1;
return H[u] = h1>h2?h1:h2;
} int getSibling(int u) {
if(T[u].parent == NIL) return NIL;
if(T[T[u].parent].left!=u && T[T[u].parent].left!=NIL) return T[T[u].parent].left;
if(T[T[u].parent].right!=u && T[T[u].parent].right!=NIL) return T[T[u].parent].right;
return NIL;
} void print(int u) {
printf("node %d: parent = %d, sibling = %d, ", u, T[u].parent, getSibling(u));
int deg = 0;
if(T[u].left != NIL) ++deg;
if(T[u].right != NIL) ++deg;
printf("degree = %d, depth = %d, height = %d, ", deg, D[u], H[u]);
if(T[u].parent == NIL) printf("root\n");
else if(T[u].left==NIL && T[u].right==NIL) printf("leaf\n");
else printf("internal node\n");
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, v, l, r, root = 0;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].parent = NIL;
for(i=0; i<n; ++i) {
scanf("%d%d%d", &v, &l, &r);
T[v].left = l, T[v].right = r;
if(l != NIL) T[l].parent = v;
if(r != NIL) T[r].parent = v;
} for(i=0; i<n; ++i)
if(T[i].parent == NIL) root = i;
setDepth(root, 0); setHeight(root); for(i=0; i<n; ++i) print(i); return 0;
}
ALDS1_7_C-TreeWalk.
Description:

Binary trees are defined recursively. A binary tree T is a structure defined on a finite set of nodes that either

contains no nodes, or

is composed of three disjoint sets of nodes:

  • a root node.
  • a binary tree called its left subtree.
  • a binary tree called its right subtree.

    Your task is to write a program which perform tree walks (systematically traverse all nodes in a tree) based on the following algorithms:

Print the root, the left subtree and right subtree (preorder).

Print the left subtree, the root and right subtree (inorder).

Print the left subtree, right subtree and the root (postorder).

Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n linen, the information of each node is given in the following format:

id left right

id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1

Output:

In the 1st line, print "Preorder", and in the 2nd line print a list of node IDs obtained by the preorder tree walk.

In the 3rd line, print "Inorder", and in the 4th line print a list of node IDs obtained by the inorder tree walk.

In the 5th line, print "Postorder", and in the 6th line print a list of node IDs obtained by the postorder tree walk.

Print a space character before each node ID.

Constraints:

1 ≤ n ≤ 25

SampleInput1:

9

0 1 4

1 2 3

2 -1 -1

3 -1 -1

4 5 8

5 6 7

6 -1 -1

7 -1 -1

8 -1 -1

SampleOutput1:

Preorder

0 1 2 3 4 5 6 7 8

Inorder

2 1 3 0 6 5 7 4 8

Postorder

2 3 1 6 7 5 8 4 0

Codes:
//#define LOCAL

#include <cstdio>

#define MAX 10000
#define NIL -1
struct Node { int p, l, r; };
Node T[MAX]; void preParse(int u) {
if(u == NIL) return;
printf(" %d", u);
preParse(T[u].l);
preParse(T[u].r);
} void inParese(int u) {
if(u == NIL) return;
inParese(T[u].l);
printf(" %d", u);
inParese(T[u].r);
} void postParse(int u) {
if(u == NIL) return;
postParse(T[u].l);
postParse(T[u].r);
printf(" %d", u);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int n, i, v, l, r, root;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].p = NIL;
for(i=0; i<n; ++i) {
scanf("%d%d%d", &v, &l, &r);
T[v].l = l, T[v].r = r;
if(l != NIL) T[l].p = v;
if(r != NIL) T[r].p = v;
}
for(i=0; i<n; ++i)
if(T[i].p == NIL) root = i; printf("Preorder\n"); preParse(root);
printf("\nInorder\n"); inParese(root);
printf("\nPostorder\n"); postParse(root);
printf("\n"); return 0;
}
ALDS1_7_D-ReconstructionOfTheTree.
Codes:
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
using namespace std; int n, pos;
vector<int> pre, in, post; void rec(int l, int r) {
if(l >= r) return;
int root = pre[pos++];
int m = distance(in.begin(), find(in.begin(),in.end(),root));
rec(1, m);
rec(m+1, r);
post.push_back(root);
} void solve() {
pos = 0;
rec(0, pre.size());
for(int i=0; i<n; ++i) {
if(i) cout << " ";
cout << post[i];
}
cout << endl;
} int main()
{
int k;
cin >> n;
for(int i=0; i<n; ++i) {
cin >> k;
pre.push_back(k);
}
for(int i=0; i<n; ++i) {
cin >> k;
in.push_back(k);
} solve(); return 0;
}
ALDS1_8_A-BinarySearchTreeI
Codes:
//#define LOCAL

#include <cstdio>
#include <cstdlib> struct Node {
int k;
Node *p, *l, *r;
};
Node *N, *R; void insert(int u) {
Node *a = R, *b = N, *c;
c = (Node *)malloc(sizeof(Node));
c->k = u, c->l = N, c->r = N; while(a != N) {
b = a;
if(c->k < a->k) a = a->l;
else a = a->r;
}
c->p = b;
if(b == N) {
R = c;
} else {
if(c->k < b->k) b->l = c;
else b->r = c;
}
} void inOrder(Node *u) {
if(u == N) return;
inOrder(u->l);
printf(" %d", u->k);
inOrder(u->r);
} void preOrder(Node *u) {
if(u == N) return;
printf(" %d", u->k);
preOrder(u->l);
preOrder(u->r);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, i, n;
char c[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s", c);
if(c[0] == 'i') {
scanf("%d", &a);
insert(a);
} else {
inOrder(R); printf("\n");
preOrder(R); printf("\n");
}
} return 0;
}
ALDS1_8_B-BinarySearchTreeII
Codes:
//#define LOCAL

#include <cstdio>
#include <cstdlib> struct Node {
int k;
Node *p, *l, *r;
};
Node *N, *R; Node* find(Node *u, int a) {
while(u!=N && a!=u->k) {
if(a < u->k) u = u->l;
else u = u->r;
}
} void insert(int u) {
Node *a = R, *b = N, *c;
c = (Node *)malloc(sizeof(Node));
c->k = u, c->l = N, c->r = N; while(a != N) {
b = a;
if(c->k < a->k) a = a->l;
else a = a->r;
}
c->p = b;
if(b == N) {
R = c;
} else {
if(c->k < b->k) b->l = c;
else b->r = c;
}
} void inOrder(Node *u) {
if(u == N) return;
inOrder(u->l);
printf(" %d", u->k);
inOrder(u->r);
} void preOrder(Node *u) {
if(u == N) return;
printf(" %d", u->k);
preOrder(u->l);
preOrder(u->r);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, i, n;
char c[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s", c);
if(c[0] == 'f') {
scanf("%d", &a);
Node *t = find(R, a);
if(t != N) printf("yes\n");
else printf("no\n");
} else if(c[0] == 'i'){
scanf("%d", &a);
insert(a);
} else {
inOrder(R); printf("\n");
preOrder(R); printf("\n");
}
} return 0;
}

AOJ/树与二叉搜索树习题集的更多相关文章

  1. 树&二叉树&二叉搜索树

    树&二叉树 树是由节点和边构成,储存元素的集合.节点分根节点.父节点和子节点的概念. 二叉树binary tree,则加了"二叉"(binary),意思是在树中作区分.每个 ...

  2. 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)

    定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...

  3. AOJ/树二叉搜索树习题集

    ALDS1_7_A-RootedTree. Description: A graph G = (V, E) is a data structure where V is a finite set of ...

  4. 查找树ADT——二叉搜索树

    在以下讨论中,虽然任意复杂的关键字都是允许的,但为了简单起见,假设它们都是整数,并且所有的关键字是互异的. 总概   使二叉树成为二叉查找树的性质是,对于树中的每个节点X,它的左子树中所有关键字值小于 ...

  5. 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...

  6. PAT 天梯赛 L2-004 这是二叉搜索树吗?

    递归判断+建树 题目链接:https://www.patest.cn/contests/gplt/L2-004 题解 二叉搜索树的特点就是其根节点的值是位于左右子树之间的,即大于左子树的所有值,但是小 ...

  7. 剑指Offer 62. 二叉搜索树的第k个结点 (二叉搜索树)

    题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8)    中,按结点数值大小顺序第三小结点的值为4. 例如, 5 / \ 3 7 / \ / \ 2 4 6 ...

  8. hdu 3791:二叉搜索树(数据结构,二叉搜索树 BST)

    二叉搜索树 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submiss ...

  9. 二叉搜索树-php实现 插入删除查找等操作

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

随机推荐

  1. QT5学习:分割窗口类的使用

    分割窗口在应用程序中经常用到,它可以灵活分布窗口布局,经常用于类似文件资源管理器的窗口设计中,然后抱着这样的想法简单的实现了下 [cpp]  view plain copy   //main.cpp ...

  2. C#序列化和反序列化 之 dynamic 动态Json的反序列化

    序列化和反序列化的常识不再赘述,如果不清楚这个,可以 参考一下其他人写的文章https://www.cnblogs.com/maitian-lf/p/3670570.html 总结的说, 序列化 是把 ...

  3. ubuntu 16.04 & 18.04 远程桌面使用

    其自带的远程桌面: Server端,被访问端,    Desktop Sharing Client端,访问者的电脑端. Remmina Remote Desktop Client, VNC -> ...

  4. 用C++实现的Euler筛法程序

    Euler筛法介绍 以筛出100以内(含100)的所有素数为例来说明一下欧拉筛法的原理. 和Eratosthenes筛法一样,Euler筛法也从2开始筛,但Eratosthenes筛法会把2的倍数一批 ...

  5. RabbitMQ-初见

    目录 什么是中间件 消息队列协议 AMQP协议 MQTT协议 OpenMessage协议 Kafka协议 消息队列持久化 消息的分发策略 消息队列高可用和高可靠 什么是高可用机制 集群模式1 - Ma ...

  6. adb shell 查看当前与用户交互的 activity

    adb shell dumpsys activity activities | grep mActivityComponent

  7. 微信小游戏 Three.js UI 2D text 简单方案

    在微信小游戏中使用 THREE.js 引擎,没有合适的 UI 库可用,只能自己动手.图片啥的都还好,text 不好弄.text 要计算 width 和 height,不然事件响应范围不对. funct ...

  8. Python之smtplib模块

    工作中难免会出现自动发送电子邮件的需求,比如说做完自动化测试之后通过电子邮件的形式将结果反馈出来.Python中提供了标准库smtplib来解决这一问题,该模块定义了一个smtp客户端会话对象,能够将 ...

  9. openswan协商流程之(三):main_inR1_outI2

    主模式第三包:main_inR1_outI2 1. 序言 main_inR1_outI2()函数是ISAKMP协商过程中第三包的核心处理函数的入口.这里我们主要说明main_inR1_outI2的函数 ...

  10. 硕盟SM-T54| TYPE C转HDMI+VGA+USB3.0+PD3.0四合一多功能扩展坞

    硕盟SM-T54是一款 TYPE C转HDMI+VGA+USB3.0+PD3.0四合一多功能扩展坞,支持四口同时使用,您可以将含有USB 3.1协议的电脑主机,通过此产品连接到具有HDMI或VGA的显 ...