ALDS1_7_A-RootedTree.
Description:

A graph G = (V, E) is a data structure where V is a finite set of vertices and E is a binary relation on V represented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

node ID of u

parent of u

depth of u

node type (root, internal node or leaf)

a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (p, x), then p is the parent of x, and x is a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k c1 c2 ... ck

where id is the node ID of u, k is the degree of u, c1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output:

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = d, type, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints:

≤ n ≤ 100000

SampleInput1:

13

0 3 1 4 10

1 2 2 3

2 0

3 0

4 3 5 6 7

5 0

6 0

7 2 8 9

8 0

9 0

10 2 11 12

11 0

12 0

SampleOutput1:

node 0: parent = -1, depth = 0, root, [1, 4, 10]

node 1: parent = 0, depth = 1, internal node, [2, 3]

node 2: parent = 1, depth = 2, leaf, []

node 3: parent = 1, depth = 2, leaf, []

node 4: parent = 0, depth = 1, internal node, [5, 6, 7]

node 5: parent = 4, depth = 2, leaf, []

node 6: parent = 4, depth = 2, leaf, []

node 7: parent = 4, depth = 2, internal node, [8, 9]

node 8: parent = 7, depth = 3, leaf, []

node 9: parent = 7, depth = 3, leaf, []

node 10: parent = 0, depth = 1, internal node, [11, 12]

node 11: parent = 10, depth = 2, leaf, []

node 12: parent = 10, depth = 2, leaf, []

SampleInput2:

4

1 3 3 2 0

0 0

3 0

2 0

SampleOutput2:

node 0: parent = 1, depth = 1, leaf, []

node 1: parent = -1, depth = 0, root, [3, 2, 0]

node 2: parent = 1, depth = 1, leaf, []

node 3: parent = 1, depth = 1, leaf, []

Codes:
//#define LOCAL

#include <cstdio>

#define N -1
#define M 100010
struct Node { int p, l, r; };
Node T[M]; int A[M]; void print(int a) {
int i = 0, b = T[a].l;
printf("node %d: parent = %d, depth = %d, ", a, T[a].p, A[a]);
if(T[a].p == N) printf("root, [");
else if(T[a].l == N) printf("leaf, [");
else printf("internal node, [");
for(; b!=N; ++i, b=T[b].r) {
if(i) printf(", ");
printf("%d", b);
}
printf("]\n");
} void rec(int a, int b) {
A[a] = b;
if(T[a].r != N) rec(T[a].r, b);
if(T[a].l != N) rec(T[a].l, b+1);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, b, c, d, i, j, n, r;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].p = T[i].l = T[i].r = -1; for(i=0; i<n; ++i) {
scanf("%d%d", &a, &b);
for(j=0; j<b; ++j) {
scanf("%d", &c);
if(!j) T[a].l = c;
else T[d].r = c;
d = c; T[c].p = a;
}
}
for(i=0; i<n; ++i) {
if(T[i].p == N) { r = i; break; }
} rec(r, 0);
for(i=0; i<n; ++i) print(i); return 0;
}
ALDS1_7_B-BinaryTree.
Description:

A rooted binary tree is a tree with a root node in which every node has at most two children.

Your task is to write a program which reads a rooted binary tree T and prints the following information for each node u of T:

node ID of u

parent of u

sibling of u

the number of children of u

depth of u

height of u

node type (root, internal node or leaf)

If two nodes have the same parent, they are siblings. Here, if u and v have the same parent, we say u is a sibling of v (vice versa).

The height of a node in a tree is the number of edges on the longest simple downward path from the node to a leaf.

Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node is given in the following format:

id left right

id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1.

Output:

Print the information of each node in the following format:

node id: parent = p , sibling = s , degree = deg, depth = dep, height = h, type

p is ID of its parent. If the node does not have a parent, print -1.

s is ID of its sibling. If the node does not have a sibling, print -1.

deg, dep and h are the number of children, depth and height of the node respectively.

type is a type of nodes represented by a string (root, internal node or leaf. If the root can be considered as a leaf or an internal node, print root.

Please follow the format presented in a sample output below.

Constraints:

1 ≤ n ≤ 25

SampleInput:

9

0 1 4

1 2 3

2 -1 -1

3 -1 -1

4 5 8

5 6 7

6 -1 -1

7 -1 -1

8 -1 -1

SampleOutput:

node 0: parent = -1, sibling = -1, degree = 2, depth = 0, height = 3, root

node 1: parent = 0, sibling = 4, degree = 2, depth = 1, height = 1, internal node

node 2: parent = 1, sibling = 3, degree = 0, depth = 2, height = 0, leaf

node 3: parent = 1, sibling = 2, degree = 0, depth = 2, height = 0, leaf

node 4: parent = 0, sibling = 1, degree = 2, depth = 1, height = 2, internal node

node 5: parent = 4, sibling = 8, degree = 2, depth = 2, height = 1, internal node

node 6: parent = 5, sibling = 7, degree = 0, depth = 3, height = 0, leaf

node 7: parent = 5, sibling = 6, degree = 0, depth = 3, height = 0, leaf

node 8: parent = 4, sibling = 5, degree = 0, depth = 2, height = 0, leaf

Codes:
//#define LOCAL

#include <cstdio>

#define MAX 10000
#define NIL -1
struct Node { int parent, left, right; };
Node T[MAX]; int n, D[MAX], H[MAX]; void setDepth(int u, int d) {
if(u == NIL) return;
D[u] = d;
setDepth(T[u].left, d+1);
setDepth(T[u].right, d+1);
} int setHeight(int u) {
int h1 = 0, h2 = 0;
if(T[u].left != NIL) h1 = setHeight(T[u].left)+1;
if(T[u].right != NIL) h2 = setHeight(T[u].right)+1;
return H[u] = h1>h2?h1:h2;
} int getSibling(int u) {
if(T[u].parent == NIL) return NIL;
if(T[T[u].parent].left!=u && T[T[u].parent].left!=NIL) return T[T[u].parent].left;
if(T[T[u].parent].right!=u && T[T[u].parent].right!=NIL) return T[T[u].parent].right;
return NIL;
} void print(int u) {
printf("node %d: parent = %d, sibling = %d, ", u, T[u].parent, getSibling(u));
int deg = 0;
if(T[u].left != NIL) ++deg;
if(T[u].right != NIL) ++deg;
printf("degree = %d, depth = %d, height = %d, ", deg, D[u], H[u]);
if(T[u].parent == NIL) printf("root\n");
else if(T[u].left==NIL && T[u].right==NIL) printf("leaf\n");
else printf("internal node\n");
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, v, l, r, root = 0;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].parent = NIL;
for(i=0; i<n; ++i) {
scanf("%d%d%d", &v, &l, &r);
T[v].left = l, T[v].right = r;
if(l != NIL) T[l].parent = v;
if(r != NIL) T[r].parent = v;
} for(i=0; i<n; ++i)
if(T[i].parent == NIL) root = i;
setDepth(root, 0); setHeight(root); for(i=0; i<n; ++i) print(i); return 0;
}
ALDS1_7_C-TreeWalk.
Description:

Binary trees are defined recursively. A binary tree T is a structure defined on a finite set of nodes that either

contains no nodes, or

is composed of three disjoint sets of nodes:

  • a root node.
  • a binary tree called its left subtree.
  • a binary tree called its right subtree.

    Your task is to write a program which perform tree walks (systematically traverse all nodes in a tree) based on the following algorithms:

Print the root, the left subtree and right subtree (preorder).

Print the left subtree, the root and right subtree (inorder).

Print the left subtree, right subtree and the root (postorder).

Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Input:

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n linen, the information of each node is given in the following format:

id left right

id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1

Output:

In the 1st line, print "Preorder", and in the 2nd line print a list of node IDs obtained by the preorder tree walk.

In the 3rd line, print "Inorder", and in the 4th line print a list of node IDs obtained by the inorder tree walk.

In the 5th line, print "Postorder", and in the 6th line print a list of node IDs obtained by the postorder tree walk.

Print a space character before each node ID.

Constraints:

1 ≤ n ≤ 25

SampleInput1:

9

0 1 4

1 2 3

2 -1 -1

3 -1 -1

4 5 8

5 6 7

6 -1 -1

7 -1 -1

8 -1 -1

SampleOutput1:

Preorder

0 1 2 3 4 5 6 7 8

Inorder

2 1 3 0 6 5 7 4 8

Postorder

2 3 1 6 7 5 8 4 0

Codes:
//#define LOCAL

#include <cstdio>

#define MAX 10000
#define NIL -1
struct Node { int p, l, r; };
Node T[MAX]; void preParse(int u) {
if(u == NIL) return;
printf(" %d", u);
preParse(T[u].l);
preParse(T[u].r);
} void inParese(int u) {
if(u == NIL) return;
inParese(T[u].l);
printf(" %d", u);
inParese(T[u].r);
} void postParse(int u) {
if(u == NIL) return;
postParse(T[u].l);
postParse(T[u].r);
printf(" %d", u);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int n, i, v, l, r, root;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].p = NIL;
for(i=0; i<n; ++i) {
scanf("%d%d%d", &v, &l, &r);
T[v].l = l, T[v].r = r;
if(l != NIL) T[l].p = v;
if(r != NIL) T[r].p = v;
}
for(i=0; i<n; ++i)
if(T[i].p == NIL) root = i; printf("Preorder\n"); preParse(root);
printf("\nInorder\n"); inParese(root);
printf("\nPostorder\n"); postParse(root);
printf("\n"); return 0;
}
ALDS1_7_D-ReconstructionOfTheTree.
Codes:
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
using namespace std; int n, pos;
vector<int> pre, in, post; void rec(int l, int r) {
if(l >= r) return;
int root = pre[pos++];
int m = distance(in.begin(), find(in.begin(),in.end(),root));
rec(1, m);
rec(m+1, r);
post.push_back(root);
} void solve() {
pos = 0;
rec(0, pre.size());
for(int i=0; i<n; ++i) {
if(i) cout << " ";
cout << post[i];
}
cout << endl;
} int main()
{
int k;
cin >> n;
for(int i=0; i<n; ++i) {
cin >> k;
pre.push_back(k);
}
for(int i=0; i<n; ++i) {
cin >> k;
in.push_back(k);
} solve(); return 0;
}
ALDS1_8_A-BinarySearchTreeI
Codes:
//#define LOCAL

#include <cstdio>
#include <cstdlib> struct Node {
int k;
Node *p, *l, *r;
};
Node *N, *R; void insert(int u) {
Node *a = R, *b = N, *c;
c = (Node *)malloc(sizeof(Node));
c->k = u, c->l = N, c->r = N; while(a != N) {
b = a;
if(c->k < a->k) a = a->l;
else a = a->r;
}
c->p = b;
if(b == N) {
R = c;
} else {
if(c->k < b->k) b->l = c;
else b->r = c;
}
} void inOrder(Node *u) {
if(u == N) return;
inOrder(u->l);
printf(" %d", u->k);
inOrder(u->r);
} void preOrder(Node *u) {
if(u == N) return;
printf(" %d", u->k);
preOrder(u->l);
preOrder(u->r);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, i, n;
char c[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s", c);
if(c[0] == 'i') {
scanf("%d", &a);
insert(a);
} else {
inOrder(R); printf("\n");
preOrder(R); printf("\n");
}
} return 0;
}
ALDS1_8_B-BinarySearchTreeII
Codes:
//#define LOCAL

#include <cstdio>
#include <cstdlib> struct Node {
int k;
Node *p, *l, *r;
};
Node *N, *R; Node* find(Node *u, int a) {
while(u!=N && a!=u->k) {
if(a < u->k) u = u->l;
else u = u->r;
}
} void insert(int u) {
Node *a = R, *b = N, *c;
c = (Node *)malloc(sizeof(Node));
c->k = u, c->l = N, c->r = N; while(a != N) {
b = a;
if(c->k < a->k) a = a->l;
else a = a->r;
}
c->p = b;
if(b == N) {
R = c;
} else {
if(c->k < b->k) b->l = c;
else b->r = c;
}
} void inOrder(Node *u) {
if(u == N) return;
inOrder(u->l);
printf(" %d", u->k);
inOrder(u->r);
} void preOrder(Node *u) {
if(u == N) return;
printf(" %d", u->k);
preOrder(u->l);
preOrder(u->r);
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int a, i, n;
char c[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s", c);
if(c[0] == 'f') {
scanf("%d", &a);
Node *t = find(R, a);
if(t != N) printf("yes\n");
else printf("no\n");
} else if(c[0] == 'i'){
scanf("%d", &a);
insert(a);
} else {
inOrder(R); printf("\n");
preOrder(R); printf("\n");
}
} return 0;
}

AOJ/树与二叉搜索树习题集的更多相关文章

  1. 树&二叉树&二叉搜索树

    树&二叉树 树是由节点和边构成,储存元素的集合.节点分根节点.父节点和子节点的概念. 二叉树binary tree,则加了"二叉"(binary),意思是在树中作区分.每个 ...

  2. 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)

    定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...

  3. AOJ/树二叉搜索树习题集

    ALDS1_7_A-RootedTree. Description: A graph G = (V, E) is a data structure where V is a finite set of ...

  4. 查找树ADT——二叉搜索树

    在以下讨论中,虽然任意复杂的关键字都是允许的,但为了简单起见,假设它们都是整数,并且所有的关键字是互异的. 总概   使二叉树成为二叉查找树的性质是,对于树中的每个节点X,它的左子树中所有关键字值小于 ...

  5. 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...

  6. PAT 天梯赛 L2-004 这是二叉搜索树吗?

    递归判断+建树 题目链接:https://www.patest.cn/contests/gplt/L2-004 题解 二叉搜索树的特点就是其根节点的值是位于左右子树之间的,即大于左子树的所有值,但是小 ...

  7. 剑指Offer 62. 二叉搜索树的第k个结点 (二叉搜索树)

    题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8)    中,按结点数值大小顺序第三小结点的值为4. 例如, 5 / \ 3 7 / \ / \ 2 4 6 ...

  8. hdu 3791:二叉搜索树(数据结构,二叉搜索树 BST)

    二叉搜索树 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submiss ...

  9. 二叉搜索树-php实现 插入删除查找等操作

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

随机推荐

  1. 【springcloud】客户端负载均衡(Ribbon)

    转自:https://blog.csdn.net/pengjunlee/article/details/86594934 服务器端负载均衡负载均衡是我们处理高并发.缓解网络压力和进行服务器扩容的重要手 ...

  2. Map 综述(二):彻头彻尾理解 LinkedHashMap

    摘要: HashMap和双向链表合二为一即是LinkedHashMap.所谓LinkedHashMap,其落脚点在HashMap,因此更准确地说,它是一个将所有Entry节点链入一个双向链表的Hash ...

  3. 微信小程序学习笔记四 自定义组件

    1. 自定义组件 类似Vue或react中的自定义组件 小程序允许我们使用自定义组件的方式来构建页面 1.1 创建自定义组件 类似于页面, 一个自定义组件由json wxml wxss js 4个文件 ...

  4. C++类和对象笔记

    笔记参考C++视频课程 黑马C++ C++ 面向对象的三大特性:封装.继承.多态 目录 目录 目录 一.封装 1.1 封装的意义-属性和行为 1.2 struct和class的区别 1.3 成员属性设 ...

  5. 恶意软件开发——shellcode执行的几种常见方式

    一.什么是shellcode? shellcode是一小段代码,用于利用软件漏洞作为有效载荷.它之所以被称为"shellcode",是因为它通常启动一个命令shell,攻击者可以从 ...

  6. 痞子衡嵌入式:MCUXpresso IDE下SDK工程在Build配置上与IAR,MDK差异

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是MCUXpresso IDE下SDK工程在Build配置上与IAR,MDK差异. 恩智浦 SW 团队每个季度都会公布 SDK.Tool ...

  7. 使用ECharts绘制网址径向树状图

    an.rustfisher.com有很多内容,很多页面.如果用一个树状图把所有页面展示出来会是什么效果? 第一时间想到了ECharts. 最后效果: https://an.rustfisher.com ...

  8. MySQL-SQL基础

    mysql> use test; Database changed mysql> create table emp(ename varchar(10),hirdate date,sal d ...

  9. JVM加载class文件的一些理解

    Java是一种动态解释型语言,类(class)只有被加载到JVM中后才能运行.每当一个Java程序运行时,都会有一个对应的JVM实例,只有当程序运行结束后,这个JVM才会退出.JVM实例通过调用类的m ...

  10. IO流学习笔记(二)之BufferedWriter与BufferedReader及实例Demo

    在之前的学习笔记(http://blog.csdn.net/megustas_jjc/article/details/72853059)中,FileWriter与FileReader的Demo使用的中 ...