下载安装到实战详细步骤

NLTK下载安装

先使用pip install nltk 安装包

然后运行下面两行代码会弹出如图得GUI界面,注意下载位置,然后点击下载全部下载了大概3.5G。

import nltk
nltk.download()!

下载成功后查看是否可以使用,运行下面代码看看是否可以调用brown中的词库

from nltk.corpus import brown

print(brown.categories())  # 输出brown语料库的类别
print(len(brown.sents())) # 输出brown语料库的句子数量
print(len(brown.words())) # 输出brown语料库的词数量 '''
结果为:
['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies',
'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance',
'science_fiction']
57340
1161192
'''

这时候有可能报错,说在下面文件夹中没有找到nltk_data

把下载好的文件解压在复制到其中一个文件夹位置即可,注意文件名,让后就能正常使用!

实战:运用自己的数据进行操作

一、使用自己的训练集训练和分析

可以看到我的训练集和代码的结构是这样的:pos和neg里面是txt文本

链接:https://pan.baidu.com/s/1GrNg3ziWJGhcQIWBCr2PMg

提取码:1fb8

import nltk.classify.util
from nltk.classify import NaiveBayesClassifier
import os
from nltk.corpus import stopwords
import pandas as pd def extract_features(word_list):
return dict([(word, True) for word in word_list]) #停用词
stop = stopwords.words('english')
stop1 = ['!', ',' ,'.' ,'?' ,'-s' ,'-ly' ,' ', 's','...']
stop = stop1+stop
print(stop) #读取txt文本
def readtxt(f,path):
data1 = ['microwave']
# 以 utf-8 的编码格式打开指定文件
f = open(path+f, encoding="utf-8")
# 输出读取到的数据
#data = f.read().split()
data = f.read().split()
for i in range(len(data)):
if data[i] not in stop:
data[i] = [data[i]]
data1 = data1+data[i]
# 关闭文件
f.close()
del data1[0]
return data1 if __name__ == '__main__': # 加载积极与消极评论 这些评论去掉了一些停用词,是在readtxt韩硕里处理的,
#停用词如 i am you a this 等等在评论中是非常常见的,有可能对结果有影响,应该事先去除
positive_fileids = os.listdir('pos') # 积极 list类型 42条数据 每一条是一个txt文件
print(type(positive_fileids), len(positive_fileids)) # list类型 42条数据 每一条是一个txt文件
negative_fileids = os.listdir('neg')#消极 list类型 22条数据 每一条是一个txt文件自己找的一些数据
print(type(negative_fileids),len(negative_fileids)) # 将这些评论数据分成积极评论和消极评论
# movie_reviews.words(fileids=[f])表示每一个txt文本里面的内容,结果是单词的列表:['films', 'adapted', 'from', 'comic', 'books', 'have', ...]
# features_positive 结果为一个list
# 结果形如:[({'shakesp: True, 'limit': True, 'mouth': True, ..., 'such': True, 'prophetic': True}, 'Positive'), ..., ({...}, 'Positive'), ...]
path = 'pos/'
features_positive = [(extract_features(readtxt(f,path=path)), 'Positive') for f in positive_fileids]
path = 'neg/'
features_negative = [(extract_features(readtxt(f,path=path)), 'Negative') for f in negative_fileids] # 分成训练数据集(80%)和测试数据集(20%)
threshold_factor = 0.8
threshold_positive = int(threshold_factor * len(features_positive)) # 800
threshold_negative = int(threshold_factor * len(features_negative)) # 800
# 提取特征 800个积极文本800个消极文本构成训练集 200+200构成测试文本
features_train = features_positive[:threshold_positive] + features_negative[:threshold_negative]
features_test = features_positive[threshold_positive:] + features_negative[threshold_negative:]
print("\n训练数据点的数量:", len(features_train))
print("测试数据点的数量:", len(features_test)) # 训练朴素贝叶斯分类器
classifier = NaiveBayesClassifier.train(features_train)
print("\n分类器的准确性:", nltk.classify.util.accuracy(classifier, features_test))
print("\n五大信息最丰富的单词:")
for item in classifier.most_informative_features()[:5]:
print(item[0]) # 输入一些简单的评论
input_reviews = [
"works well with proper preparation.",
] #运行分类器,获得预测结果
print("\n预测:")
for review in input_reviews:
print("\n评论:", review)
probdist = classifier.prob_classify(extract_features(review.split()))
pred_sentiment = probdist.max()
# 打印输出
print("预测情绪:", pred_sentiment)
print("可能性:", round(probdist.prob(pred_sentiment), 2)) print("结束")

运行结果:这里的准确性有点高,这是因为我选取的一些数据是非常明显的表达积极和消极的所以处理结果比较难以相信

<class 'list'> 42
<class 'list'> 22 训练数据点的数量: 50
测试数据点的数量: 14 分类器的准确性: 1.0 五大信息最丰富的单词:
microwave
product
works
ever
service 预测: 评论: works well with proper preparation.
预测情绪: Positive
可能性: 0.77
结束

二、使用自带库分析

import pandas as pd

from nltk.sentiment.vader import SentimentIntensityAnalyzer
# 分析句子的情感:情感分析是NLP最受欢迎的应用之一。情感分析是指确定一段给定的文本是积极还是消极的过程。
# 有一些场景中,我们还会将“中性“作为第三个选项。情感分析常用于发现人们对于一个特定主题的看法。
# 定义一个用于提取特征的函数
# 输入一段文本返回形如:{'It': True, 'movie': True, 'amazing': True, 'is': True, 'an': True}
# 返回类型是一个dict if __name__ == '__main__': # 输入一些简单的评论
#data = pd.read_excel('data3/microwave1.xlsx')
name = 'hair_dryer1'
data = pd.read_excel('../data3/'+name+'.xlsx')
input_reviews = data[u'review_body']
input_reviews = input_reviews.tolist()
input_reviews = [
"works well with proper preparation.",
"i hate that opening the door moves the microwave towards you and out of its place. thats my only complaint.",
"piece of junk. got two years of use and it died. customer service says too bad. whirlpool dishwasher died a few months ago. whirlpool is dead to me.",
"am very happy with this"
] #运行分类器,获得预测结果
for sentence in input_reviews:
sid = SentimentIntensityAnalyzer()
ss = sid.polarity_scores(sentence)
print("句子:"+sentence)
for k in sorted(ss):
print('{0}: {1}, '.format(k, ss[k]), end='') print()
print("结束")

结果:

句子:works well with proper preparation.
compound: 0.2732, neg: 0.0, neu: 0.656, pos: 0.344,
句子:i hate that opening the door moves the microwave towards you and out of its place. thats my only complaint.
compound: -0.7096, neg: 0.258, neu: 0.742, pos: 0.0,
句子:piece of junk. got two years of use and it died. customer service says too bad. whirlpool dishwasher died a few months ago. whirlpool is dead to me.
compound: -0.9432, neg: 0.395, neu: 0.605, pos: 0.0,
句子:am very happy with this
compound: 0.6115, neg: 0.0, neu: 0.5, pos: 0.5,
结束

结果解释:

compound就相当于一个综合评价,主要和消极和积极的可能性有关

neg:消极可能性

pos:积极可能性

neu:中性可能性

NTLK情感分析安装与使用的两种方式 nltk-python的更多相关文章

  1. eclipse里安装SVN插件的两种方式

    eclipse里安装SVN插件,一般来说,有两种方式: 直接下载SVN插件,将其解压到eclipse的对应目录里 使用eclipse 里Help菜单的“Install New Software”,通过 ...

  2. Ubuntu 16.04安装JDK7/JDK8的两种方式

    ubuntu 安装jdk 的两种方式:1:通过ppa(源) 方式安装. 2:通过官网下载安装包安装. 这里推荐第1种,因为可以通过 apt-get upgrade 方式方便获得jdk的升级 使用ppa ...

  3. python安装第三方包的两种方式

    最近研究QQ空间.微博的(爬虫)模拟登录,发现都涉及RSA算法.于是需要下一个RSA包(第三方包).折腾了很久,主要是感觉网上很多文章对具体要在哪里操作写得不清楚.这里做个总结,以免自己哪天又忘了. ...

  4. Python通过pip方式安装第三方模块的两种方式

    一:环境 python3.6 windows 10 二:常用命令 如果直接执行pip命令报错,说明pip不在path环境变量中 解决方法: python -m pip list 以下默认可直接使用pi ...

  5. Eclipse安装fat jar的两种方式

    help >software updates >add/remove software>add>>add site填写name 和urlname:Fat Jarurl:h ...

  6. Wps 2013 拼音标注两种方式分析

    Wps 2013 拼音标注两种方式分析 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转 ...

  7. linux内核分析作业4:使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用

    系统调用:库函数封装了系统调用,通过库函数和系统调用打交道 用户态:低级别执行状态,代码的掌控范围会受到限制. 内核态:高执行级别,代码可移植性特权指令,访问任意物理地址 为什么划分级别:如果全部特权 ...

  8. ubuntu 安装JAVA jdk的两种方法:

    ubuntu 安装jdk 的两种方式: 1:通过ppa(源) 方式安装. 2:通过官网下载安装包安装. 这里推荐第1种,因为可以通过 apt-get upgrade 方式方便获得jdk的升级 使用pp ...

  9. 【转】eclipse安装SVN插件的两种方法

    转载地址:http://welcome66.iteye.com/blog/1845176 eclipse里安装SVN插件,一般来说,有两种方式: 直接下载SVN插件,将其解压到eclipse的对应目录 ...

随机推荐

  1. gin框架中的会话控制

    Cookie介绍 Http协议是无状态的,服务器不能记录浏览器的访问状态,也就是说服务器不能判断请求的客户端是否已经登录 Cookie就是解决http协议无状态的方案之一 Cookie实际上就是服务器 ...

  2. java-异常-异常处理原则

    1 异常处理的原则: 2 * 1,函数内部如果抛出需要检测的异常,那么函数上必须要声明. 3 * 否则必须在函数内用trycatch捕捉,否则编译失败. 4 * 5 * 2,如果调用到了声明异常的函数 ...

  3. Nginx请求连接限制

    目录 Nginx的请求限制 HTTP协议的连接与请求 连接限制 配置示例 做个演示: 请求限制 配置示例 基本指令 limit_req_zone limit_req zone 做个演示: Nginx的 ...

  4. C++ 反汇编:关于Switch语句的优化措施

    流程控制语句是C语言中最基本的判断语句,通常我们可以使用IF来构建多分支结构,但同样可以使用Switch语句构建,Switch语句针对多分支的优化措施有4种形式,分别是,IF-ELSE优化,有序线性优 ...

  5. Basler相机启动问题xml读取出错

    切记!同一张网卡上多网口分别连多相机的时候,不要用同一个网段!!很容易出错!

  6. php表单初始化

    转载请注明来源:https://www.cnblogs.com/hookjc/ //初始化表单值的函数function  InitForm($row,$form="form1"){ ...

  7. 用Dockerfile部署zabbix

    用Dockerfile部署 zabbix-server部署阶段 要用docker跑zabbix-server,需要以下几个组件 组件名称 作用 数据库 MySQL或是PostgreSQL Zabbix ...

  8. 自定义UITableview自带侧滑删除按钮样式 by 徐

    效果如下: 实现原理: 1.打开tableview自带的侧滑删除功能 核心代码: 1 -(void)tableView:(UITableView *)tableView commitEditingSt ...

  9. TableView载入WebView的一些小技巧 By 徐

    开发APP的时候,有时候会遇到服务器返回来的数据是一堆html内容,但是又不一定是完整的html ,可能只包含了主要内容,包括一些图片,文字等 然而我们处理带有html标签的数据时,用webview是 ...

  10. go基础——goto语法

    package main import "fmt" func main() { a := 10 LOOP: for a < 20 { if a == 15 { a += 1 ...