读者

这篇文章来自2021的SOSP,单位是斯坦福大学和微软。选该文章的理由有二,一是资源分配的主题较为相关;二是文章结构、语言很清晰,读起来很舒服。

本文的中心思想可以概括为:分化瓦解,各个击破。即,用线性规划的方式解决资源分配问题太昂贵,而启发式算法难以达到最优,且缺乏可扩展性(适应范围小,一改条件就失效)。所以该文通过将原始LP重写,得到各个部分的小LP,分别求解再组合。

注:以下翻译主要来自百度翻译(https://fanyi.baidu.com)和手动修正。

摘要

许多计算机系统中的资源分配问题都可以表述为数学优化问题。然而,对于具有严格SLA的大型问题,使用现成的求解器来寻找这些问题的精确解决方案往往很难,这导致系统设计师依赖廉价的启发式算法。然而,我们观察到,许多分配问题是颗粒的:它们由大量的客户机和资源组成,每个客户机请求的资源只占资源总数的一小部分,客户机可以互换使用不同的资源。对于这些问题,我们提出了一种替代方法,该方法重用原始优化问题公式,并导致比特定领域的启发式方法更好的分配。我们的技术是分区优化问题(Partitioned Optimization Problems,POP),它将问题随机分解为更小的问题(系统中有一部分客户端和资源),并将生成的子分配合并为所有客户端的全局分配。我们提供了理论和经验证据来解释为什么随机划分效果很好。在我们的实验中,与现有的集群调度、流量工程和负载平衡系统相比,POP实现了在最优解的1.5%范围以内,数个数量级的运行时间改进。

Solving Large-Scale Granular Resource Allocation Problems Efficiently with POP(2021-POP-SOSP-文献阅读笔记)的更多相关文章

  1. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  2. hdu 3288 Resource Allocation

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3288 Resource Allocation Description HDU-Sailormoon i ...

  3. Lessons learned developing a practical large scale machine learning system

    原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...

  4. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  5. 快速高分辨率图像的立体匹配方法Effective large scale stereo matching

    <Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...

  6. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  8. [C12] 大规模机器学习(Large Scale Machine Learning)

    大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...

  9. Spark动态资源分配-Dynamic Resource Allocation

    微信搜索lxw1234bigdata | 邀请体验:数阅–数据管理.OLAP分析与可视化平台 | 赞助作者:赞助作者 Spark动态资源分配-Dynamic Resource Allocation S ...

随机推荐

  1. .Net Core中自定义认证实现

    一.起因 最近项目中需要对项目同时支持JWT认证,以及自定义的认证校验方式认证.通过对官方文档了解,得到认证实现主要通过继承IAuthenticationHandler 或 Authenticatio ...

  2. gin中自定义中间件

    package main import ( "github.com/gin-gonic/gin" "log" "time" ) func L ...

  3. MySQL基本数据类型之枚举与集合类型

    目录 一:枚举 1.枚举 2.创建表(使用枚举) 3.表内添加数据 二:集合 1.集合 2.创建表(使用集合) 3.表内添加数据 一:枚举 1.枚举 枚举作用: 提前定义好数据之后 后续录入只能录定义 ...

  4. linux不使用useradd添加新用户

    不使用useradd创建新的用户 1.进入用户特征信息:/etc/passwd 编辑: vim /etc/passwd 命令模式 :G 进入末行 进入编辑模式 :在最后添加新用户信息: 例:new_u ...

  5. ApacheCN Golang 译文集 20211025 更新

    Go 云原生编程 零.前言 一.现代微服务架构 二.使用 RESTAPI 构建微服务 三.保护微服务 四.使用消息队列的异步微服务架构 五.使用 React 构建前端 六.在容器中部署应用 七.AWS ...

  6. ApacheCN 深度学习译文集 20210125 更新

    新增了七个教程: PyTorch 中文官方教程 1.7 学习 PyTorch PyTorch 深度学习:60 分钟的突击 张量 torch.autograd的简要介绍 神经网络 训练分类器 通过示例学 ...

  7. JavaScript的内存管理

    JavaScript的内存管理 1.什么是内存管理? 在了解JavaScript的内存管理之前,可以先大致熟悉一下什么是内存管理,不管什么样的编程语言,在其代码执行的过程中都是需要为其分配内存的. 不 ...

  8. AGC004 部分简要题解

    E 首先问题可以转化为:每次将出口带着边界走,出了边界的机器人立马消失,最大化出口碰到的机器人数量. 考虑哪些机器人是已经出界了的,不难有观察: 当前出界的机器人只与当前出口往四个方向走过的最远距离有 ...

  9. AT2651 [ARC077D] SS

    定义 \(nxt_i\) 表示在字符串 \(S\) 中以 \(i\) 结尾的最长 \(border\). 引理一:若 \(n - nxt_n \mid n\) 则 \(S_{1 \sim n - nx ...

  10. XML 中如何输入回车换行

    XML 中如何输入回车换行? XML 特殊字符: 下面的字符在 [XML]中被定义为 空白(whitespace)字符: 空格 ( ) Tab ( ) 回车 ( ) 换行 ( ) XML 中如何输入回 ...