C++中简单使用HP-Socket
简介
HP-Socket 是一套通用的高性能 TCP/UDP /HTTP 通信 框架 ,包含服务端组件、客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP /HTTP 通信系统,提供 C/C++ 、 C# 、 Delphi 、 E (易语言)、 Java 、 Python 等编程语言接口。
HP-Socket是一套国产的开源通讯库,使用C++语言实现,提供多种编程语言的接口,支持 Windows 和 Linux 平台:
HP-Socket包含30多个组件 ,可根据通信角色Client/Server)、通信协议TCP/UDP/HTTP)和接收模型PUSH/PULL/PACK)进行归类,这里只简单介绍一下:
- Server组件:基于IOCP/EPOLL通信模型 ,并结合缓存池 、私有堆等技术实现高效内存管理,支持超大规模、高并发通信场景。
- Agent组件:实质上是Multi-Client组件,与Server组件采用相同的技术架构,可同时建立和高效处理大规模Socket连接 。
- Client组件:基于Event Select/POLL通信模型,每个组件对象创建一个通信线程并管理一个Socket连接, 适用于小规模客户端场景。
- Thread Pool组件:HP-Socket实现的高效易用的线程池组件,当成普通的第三方线程池库使用即可。
HP-Socket的TCP组件支持PUSH、PULL和PACK三种接收模型:
- PUSH模型:组件接收到数据时会触发监听器对象的OnReceive(pSender,dwConnID,pData,iLength)事件,把数据“推”给应用程序,这种模型使用起来是最自由的。
- PULL模型:组件接收到数据时会触发监听器对象的OnReceive(pSender,dwConnID,iTotalLength)事件 ,告诉应用程序当前已经接收到多少数据,应用程序检查数据的长度,如果满足需要则调用组件的**Fetch(dwConnID,pData,iDataLength)方法把需
要的数据“拉”出来。 - PACK模型:PACK模型系列组件是PUSH和PULL模型的结合体,应用程序不必处理分包与数据抓取,组件保证每个OnReceive事件都向应用程序提供一个完整数据包。
注:PACK模型组件会对应用程序发送的每个数据包自动加上 4 字节(32位的包头),前10位为用于数据包校验的包头标识位,后22位为记录包体长度的长度位。
使用方式
HP-Socket支持MBCS和Unicode字符集,支持32位和64位应用程序。可以通过源代码、 DLL或LIB方式使用HP-Socket。 HP-Socket发行包中已经提供了HPSocket DLL和HPSocket4C DLL。
HP-Socket提供了各种情况下的dll文件,不需要我们重新编译,dll文件按编程接口分为两大类:
- HPSocket DLL:导出C++编程接口 ,C++程序的首选方式,使用时需要把SocketInterface.h(及其依赖文件HPTypeDef.h) 、HPSocket.h以及 DLL 对应的 *.lib 文件加入到工程项目,用到SSL组件还需要HPSocket-SSL.h文件。
- HPSocket4C DLL:导出C编程接口,提供给C语言或其它编程语言使用,使用时需要把HPSocket4C.h以及 DLL 对应的 *.lib 文件加入到工程项目,用到SSL组件还需要HPSocket4C-SSL.h文件。
实现简单线程池
使用HP-Socket的线程池组件可以在程序中实现一个简单的、公用的线程池,TCP通讯的断线重连、发送心跳都会用到线程池。线程池组件的主要函数如下:
- Start:启动线程池,具体的使用可以参考源代码的注释。
- Submit:提交任务,主要使用BOOL Submit(fnTaskProc,pvArg,dwMaxWait=INFINITE),另一个函数重载是使用一个特殊的数据类型(把Socket任务参数和任务函数封装成一个数据结构)作为参数。
- Stop:关闭线程池,参数dwMaxWait代表最大等待时间(毫秒,默认: INFINITE ,一直等待)。
先实现线程池的CHPThreadPoolListener接口,然后构造IHPThreadPool智能指针,后面线程池的操作都通过智能指针操作,代码如下:
class CHPThreadPoolListenerImpl : public CHPThreadPoolListener
{
private:
void LogInfo(string logStr)
{
cout <<"ThreadPool " <<logStr << endl;
}
public:
virtual void OnStartup(IHPThreadPool* pThreadPool)
{
LogInfo("线程池启动");
}
virtual void OnShutdown(IHPThreadPool* pThreadPool)
{
LogInfo("线程池启动关闭");
}
virtual void OnWorkerThreadStart(IHPThreadPool* pThreadPool, THR_ID dwThreadID)
{
LogInfo("[" + to_string(dwThreadID) + "] " + "工作线程启动");
}
virtual void OnWorkerThreadEnd(IHPThreadPool* pThreadPool, THR_ID dwThreadID)
{
LogInfo("[" + to_string(dwThreadID) + "] " + "工作线程退出");
}
};
CHPThreadPoolListenerImpl ThreadPoolListener;
//全局共享变量使用extern关键字修饰
extern CHPThreadPoolPtr ThreadPool(&ThreadPoolListener);
实现TCP客户端
先实现一个打印函数,显示客户端相关的信息,代码如下:
void PrintInfo(ITcpClient* pSender, CONNID dwConnID)
{
char buffer[20];
TCHAR* ipAddr = buffer;
int ipLen;
USHORT port;
pSender->GetLocalAddress(ipAddr, ipLen, port);
cout << string(ipAddr,0,ipLen) << ":" << port << " " << " [" << dwConnID << "] -> ";
pSender->GetRemoteHost(ipAddr, ipLen, port);
cout << string(ipAddr, 0, ipLen) << ":" << port << " ";
}
实现CTcpClientListener监听接口,客户端断线后自动重连,以换行符分割接收到的字符串,代码如下:
bool SysExit = false;
void ReConnect(ITcpClient* pSender)
{
while (pSender->GetState() != SS_STOPPED)
{
Sleep(10);
}
pSender->Start("127.0.0.1", 60000);
}
class CClientListenerImpl : public CTcpClientListener
{
public:
virtual EnHandleResult OnConnect(ITcpClient* pSender, CONNID dwConnID)
{
PrintInfo(pSender, dwConnID);
cout << "连接成功" << endl;
return HR_OK;
}
string resStr = "";
string commStr="";
virtual EnHandleResult OnReceive(ITcpClient* pSender, CONNID dwConnID, const BYTE* pData, int iLength)
{
string str((char*)pData,0, iLength);
resStr.append(str);
int index;
while (true)
{
index = resStr.find("\r\n");
if (index == -1)break;
commStr = resStr.substr(0, index);
resStr = resStr.substr(index +2, resStr.length() - (index +2));
if (commStr!="")
{
PrintInfo(pSender, dwConnID);
cout << "收到分割字符串 " << commStr << endl;
}
}
PrintInfo(pSender, dwConnID);
cout << "数据接受 " << str << endl;
return HR_OK;
}
virtual EnHandleResult OnClose(ITcpClient* pSender, CONNID dwConnID, EnSocketOperation enOperation, int iErrorCode)
{
resStr = "";
PrintInfo(pSender, dwConnID);
cout << "连接断开,"<< enOperation <<"操作导致错误,错误码 " << iErrorCode<< endl;
if (!SysExit)
{
ThreadPool->Submit((Fn_TaskProc)(&ReConnect), (PVOID)pSender);
}
return HR_OK;
}
};
循环输入字符串发送服务端,代码如下:
int main()
{
//启动线程池
ThreadPool->Start();
CClientListenerImpl listener;
CTcpClientPtr client(&listener);
if (!client->Start("127.0.0.1", 60000))
{
cout << "连接错误:" << client->GetLastError() << "-" << client->GetLastErrorDesc();
}
string sendMsg;
while (!SysExit)
{
cin >> sendMsg;
if (sendMsg == "esc")
{
SysExit = true;
break;
}
if (client->GetState() == SS_STARTED)
{
const BYTE* data = (BYTE*)(sendMsg.c_str());
if (client->Send(data, sizeof(data)))
{
PrintInfo(client, client->GetConnectionID());
cout << "发送成功 "<<sendMsg<<endl;
}
else
{
PrintInfo(client, client->GetConnectionID());
cout << "发送失败,错误描述 " << client->GetLastError() << "-" << client->GetLastErrorDesc() << endl;
}
}
else
{
PrintInfo(client, client->GetConnectionID());
cout << "无法发送,当前状态 " <<client->GetState()<< endl;
}
}
client->Stop();
//关闭线程池
ThreadPool->Stop();
return 0;
}
实现TCP服务端
先实现一个打印函数,基本上和客户端的相同,只有获取本地IP的地方不同,代码如下:
void PrintInfo(ITcpServer* pSender, CONNID dwConnID)
{
char buffer[20];
TCHAR* ipAddr = buffer;
int ipLen;
USHORT port;
pSender->GetListenAddress(ipAddr, ipLen, port);
cout << string(ipAddr, 0, ipLen) << ":" << port << " " << "<- [" << dwConnID << "] ";
pSender->GetRemoteAddress(dwConnID, ipAddr, ipLen, port);
cout << string(ipAddr, 0, ipLen) << ":" << port << " ";
}
为了演示客户端和应用数据的绑定,定义一个用户数据类型并创建一个队列,代码如下:
class UserData
{
public:
UserData(string name="")
{
Name = name;
}
string Name;
};
queue<UserData*> qName; //创建队列对象
实现CTcpServerListener监听接口,收到字符串后加上用户名再发送回去,代码如下:
class CTcpServerListenerImpl : public CTcpServerListener
{
public:
virtual EnHandleResult OnAccept(ITcpServer* pSender, CONNID dwConnID, UINT_PTR soClient)
{
pSender->SetConnectionExtra(dwConnID,qName.front());
qName.pop();
PrintInfo(pSender, dwConnID);
cout << "连接成功" << endl;
return HR_OK;
}
virtual EnHandleResult OnReceive(ITcpServer* pSender, CONNID dwConnID, const BYTE* pData, int iLength)
{
string str((char*)pData, 0, iLength);
PrintInfo(pSender, dwConnID);
cout << "数据接受 " << str<<endl;
PVOID pInfo = nullptr;
pSender->GetConnectionExtra(dwConnID, &pInfo);
str = "reply-" + ((UserData*)pInfo)->Name + str;
const BYTE* data = (BYTE*)(str.c_str());
pSender->Send(dwConnID, data,str.size());
return HR_OK;
}
virtual EnHandleResult OnClose(ITcpServer* pSender, CONNID dwConnID, EnSocketOperation enOperation, int iErrorCode)
{
PVOID pInfo = nullptr;
pSender->GetConnectionExtra(dwConnID, &pInfo);
qName.push((UserData*)pInfo);
PrintInfo(pSender, dwConnID);
cout << "断开连接"<< endl;
pSender->SetConnectionExtra(dwConnID, NULL);
return HR_OK;
}
};
循环输入字符串发送到客户端,自动回复客户端发送的消息,代码如下:
bool SysExit = false;
int main()
{
UserData user1("NO1-User");
UserData user2("NO2-User");
UserData user3("NO3-User");
UserData user4("NO4-User");
qName.push(&user1);
qName.push(&user2);
qName.push(&user3);
qName.push(&user4);
CTcpServerListenerImpl listener;
CTcpServerPtr server(&listener);
if (!server->Start("127.0.0.1", 60000))
{
cout << "启动错误:" << server->GetLastError() << "-" << server->GetLastErrorDesc();
}
string sendMsg;
while (!SysExit)
{
cin >> sendMsg;
if (sendMsg == "esc")
{
SysExit = true;
break;
}
//如果数组长度小于当前连接数量,则获取失败
DWORD count= 1000;
CONNID pIDs[1000];
ZeroMemory(pIDs, 1000);;
if (server->GetAllConnectionIDs(pIDs, count)&& count >0)
{
for (size_t i = 0; i < count; i++)
{
const BYTE* data = (BYTE*)(sendMsg.c_str());
if (server->Send(*(pIDs+i),data, sendMsg.size()))
{
PrintInfo(server, pIDs[i]);
cout << "发送成功 " << sendMsg << endl;
}
else
{
PrintInfo(server, pIDs[i]);
cout << "发送失败,错误描述 " << server->GetLastError() << "-" << server->GetLastErrorDesc() << endl;
}
}
}
else
{
cout << "无法发送,当前连接数 " << count << endl;
}
}
server->Stop();
}
注:获取连接时指针数组的长度一定要大于当前连接数量,否则会失败。
实现Http客户端
HP-Socket的Http客户端有同步、异步两种,同步客户端不需要绑定监听器,这里使用同步客户端演示。
Sync Client:同步HTTP客户端组件(CHttpSyncClient和CHttpsSyncClient)内部会处理所有事件,因此,它们不需要绑定监听器(构造方法的监听器参数传入null); 如果绑定了监听器则可以跟踪组件的通信过程。
测试客户端可以使用实时天气接口上面的测试示例,当前的测试示例为:
http://api.k780.com/?app=weather.today&weaId=1&appkey=10003&sign=b59bc3ef6191eb9f747dd4e83c99f2a4&format=json
直接开始测试,代码如下:
int main()
{
CHttpSyncClientPtr SyncClient;
THeader type;
type.name = "Content-Type";
type.value = "text/html;charset=UTF-8";
if (SyncClient->OpenUrl("GET", "http://api.k780.com/?app=weather.today&weaId=1&appkey=10003&sign=b59bc3ef6191eb9f747dd4e83c99f2a4&format=json",&type))
{
LPCBYTE pData = nullptr;
int iLength = 0;
SyncClient->GetResponseBody(&pData, &iLength);
string body((char*)pData, iLength);
//返回的有中文,需要转化编码格式
cout << body << endl;
cout << endl;
cout << StringToUtf(body) << endl;
cout << endl;
cout << UtfToString(StringToUtf(body)) << endl;
}
else
{
cout << "打开失败:"<<SyncClient->GetLastError()<<"-"<< SyncClient->GetLastErrorDesc()<<endl;
}
}
上面的StringToUtf和UtfToString函数是转载至C++ 中文乱码的问题,该函数实现UTF-8和ANSI编码格式的转化,代码如下:
string UtfToString(string strValue)
{
int nwLen = ::MultiByteToWideChar(CP_ACP, 0, strValue.c_str(), -1, NULL, 0);
wchar_t* pwBuf = new wchar_t[nwLen + 1];//加上末尾'\0'
ZeroMemory(pwBuf, nwLen * 2 + 2);
::MultiByteToWideChar(CP_ACP, 0, strValue.c_str(), strValue.length(), pwBuf, nwLen);
int nLen = ::WideCharToMultiByte(CP_UTF8, 0, pwBuf, -1, NULL, NULL, NULL, NULL);
char* pBuf = new char[nLen + 1];
ZeroMemory(pBuf, nLen + 1);
::WideCharToMultiByte(CP_UTF8, 0, pwBuf, nwLen, pBuf, nLen, NULL, NULL);
std::string retStr(pBuf);
delete[]pwBuf;
delete[]pBuf;
pwBuf = NULL;
pBuf = NULL;
return retStr;
}
string StringToUtf(string strValue)
{
int nwLen = MultiByteToWideChar(CP_UTF8, 0, strValue.c_str(), -1, NULL, 0);
wchar_t* pwBuf = new wchar_t[nwLen + 1];//加上末尾'\0'
memset(pwBuf, 0, nwLen * 2 + 2);
MultiByteToWideChar(CP_UTF8, 0, strValue.c_str(), strValue.length(), pwBuf, nwLen);
int nLen = WideCharToMultiByte(CP_ACP, 0, pwBuf, -1, NULL, NULL, NULL, NULL);
char* pBuf = new char[nLen + 1];
memset(pBuf, 0, nLen + 1);
WideCharToMultiByte(CP_ACP, 0, pwBuf, nwLen, pBuf, nLen, NULL, NULL);
std::string retStr = pBuf;
delete[]pBuf;
delete[]pwBuf;
return retStr;
}
注:函数实现需放在main函数之前。
附件
C++中简单使用HP-Socket的更多相关文章
- Unity3D中简单的C#异步Socket实现
Unity3D中简单的C#异步Socket实现 简单的异步Socket实现..net框架自身提供了很完善的Socket底层.笔者在做Unity3D小东西的时候需要使用到Socket网络通信.于是决定自 ...
- 在浏览器中简单输入一个网址,解密其后发生的一切(http请求的详细过程)
在浏览器中简单输入一个网址,解密其后发生的一切(http请求的详细过程) 原文链接:http://www.360doc.com/content/14/1117/10/16948208_42571794 ...
- UEditor编辑器和php简单的实现socket通信
一.UEditor编辑器 使用这个编辑器是需要先下载编辑器文件,记得下载的时候放入自己的网站中,既然是php中使用,自然我下载的就是php的UEditor编辑器了,然后是utf-8的 其实使用很简单, ...
- 简单的异步Socket实现——SimpleSocket_V1.1
简单的异步Socket实现——SimpleSocket_V1.1 笔者在前段时间的博客中分享了一段简单的异步.net的Socket实现.由于是笔者自己测试使用的.写的很粗糙.很简陋.于是花了点时间自己 ...
- win32程序中简单应用mfc
今日写程序在win32中用CRect发现报错,突然想起来.要引入mfc库.想重新建立一个工程添加对mfc的支持.发现选项不能选.查资料后发现. 在win32程序中简单应用mfc库,只需要简单的引入&l ...
- PHP中简单的图形处理
PHP中简单的图形处理 计应134凌豪 1.加载GD库 GD库是一个开放的动态创建图像.源代码公开的函数库,可以从官方网站http://www.boutell.com/gd处下载.目前,GD库支持GI ...
- struts中简单的校验
Struts中简单的校验 “计应134(实验班) 凌豪” Struts2校验简要说明:struts2中通常情况下,类型转换要在数据校验之前进行.类型转换其实也是基本的服务器端校验,合法数据必然可以通过 ...
- winsock2之最简单的win socket编程
原文:winsock2之最简单的win socket编程 server.cpp #include <WINSOCK2.H> #include <stdio.h> #pragma ...
- .NET平台开源项目速览(20)Newlife.Core中简单灵活的配置文件
记得5年前开始拼命翻读X组件的源码,特别是XCode,但对Newlife.Core 的东西了解很少,最多只是会用用,而且用到的只是九牛一毛.里面好用的东西太多了. 最近一年时间,零零散散又学了很多,也 ...
- [.Net Core] 在 Mvc 中简单使用日志组件
在 Mvc 中简单使用日志组件 基于 .Net Core 2.0,本文只是蜻蜓点水,并非深入浅出. 目录 使用内置的日志组件 简单过渡到第三方组件 - NLog 使用内置的日志 下面使用控制器 Hom ...
随机推荐
- 修改CentOS ll命令显示时间格式
临时更改显示样式,当会话结束后恢复原来的样式: export TIME_STYLE='+%Y-%m-%d %H:%M:%S' 永久改变显示样式,更改后的效果会保存下来 修改/etc/profile文件 ...
- docker run 参数
一.格式 docker run [OPTIONS] IMAGE [COMMAND] [ARG...] 二.OPTIONS 参数 简写, 名称参数 默认参数 描述 --add-host 添加自定义主机到 ...
- Loj#3026-「ROIR 2018 Day1」管道监控【Trie,费用流】
正题 题目链接:https://loj.ac/p/3026 题目大意 给出\(n\)个点的一棵外向树,然后\(m\)个字符串和费用表示你每次可以花费这个费用覆盖路径字符串和给出字符串相等的路径,求覆盖 ...
- T-SQL——关于表数据的复制插入
目录 0. 复制表中一列插入到另外一列 1. 复制表结构和数据到自动创建的一张新表中--select into 2. 复制表中一些字段值插入到另外一张表中--insert into 3. 将存储过过程 ...
- 国庆总结:echarts自定义颜色主题,保证你看的明明白白
为什么需要使用颜色主题 随着用户审美越来越高,不再是过去那样只注重功能. 所以对界面的颜色样式都具有一定的审美要求 此时颜色是否好看就非常重要了 因为人都是视觉动物 对界面的第一印象肯定都是颜色. 如 ...
- 阿里云函数计算发布新功能,支持容器镜像,加速应用 Serverless 进程
我们先通过一段视频来看看函数计算和容器相结合后,在视频转码场景下的优秀表现.点击观看视频 >> FaaS 的门槛 Serverless 形态的云服务帮助开发者承担了大量复杂的扩缩容.运维. ...
- TCP 粘包 - 拆包问题及解决方案
目录 TCP粘包拆包问题 什么是粘包 - 拆包问题 为什么存在粘包 - 拆包问题 粘包 - 拆包 演示 粘包 - 拆包 解决方案 方式一: 固定缓冲区大小 方式二: 封装请求协议 方式三: 特殊字符结 ...
- python收集参数与解包
收集任意数量的实参 def make_pizza(*toppings): """打印顾客点的所有配料""" print(toppings) ...
- 网络通信IO的演变过程(一)(一个门外汉的理解)
以前从来不懂IO的底层,只知道一个大概,就是输入输出的管道怼到一起,然后就可以传输数据了. 最近看了周志垒老师的公开课后,醍醐灌顶. 所以做一个简单的记录. 0 计算机组成原理相关 0.1. 计算机的 ...
- 对比7种分布式事务方案,还是偏爱阿里开源的Seata,真香!(原理+实战)
前言 这是<Spring Cloud 进阶>专栏的第六篇文章,往期文章如下: 五十五张图告诉你微服务的灵魂摆渡者Nacos究竟有多强? openFeign夺命连环9问,这谁受得了? 阿里面 ...