令$m=\lfloor \sqrt[3]{n} \rfloor-1$ 
   $\sum_{i=1}^{n}gcd(floor(\sqrt[3]{i}),i)$
=$\sum_{i=1}^{m}\sum\limits_{j=i^{3}}^{(i+1)^{3}-1}gcd(i,j)+\sum\limits_{i=(m+1)^{3}}^{n}gcd(m+1,i)$
考虑该式的前缀和,即
   $\sum_{i=1}^{n}gcd(m,i)$(上式的m和n和之前的无关系)
=$\sum_{d|m}d\sum_{i=1}^{n/d}\varepsilon(gcd(i,m/d))$
=$\sum_{t|m}\mu(t)\sum_{dt|m}n/dt\cdot d$
=$\sum_{T|m}n/T \sum_{d|T}d\cdot \mu(T/d)$
=$\sum_{T|m}n/T\cdot \varphi(T)$
对$\varphi$线性筛,原式后半部分可以用o(m),考虑前半部分
=$\sum_{i=1}^{m}\sum_{T|i}\varphi(T)\cdot (((i+1)^{3}-1)/T-(i^3-1)/T)$
=$\sum_{T=1}^{m}\varphi(T)\sum_{i=1}^{m/T}((iT+1)^{3}-1)/T-(iT^3-1)/T$
=$\sum_{T=1}^{m}\varphi(T)\sum_{i=1}^{m/T}3Ti^{2}+3i+1$
这个就也可以o(m)计算了(后面的sigma可以预处理,也可以套公式),总时间复杂度即o(m)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 10000005
4 #define mod 998244353
5 #define ll __int128
6 int T,m,ans,s1[N],s2[N],vis[N],phi[N],p[N];
7 char s[101];
8 int main(){
9 s1[1]=3;
10 s2[1]=4;
11 phi[1]=1;
12 for(int i=2;i<N-4;i++){
13 s1[i]=(s1[i-1]+3LL*i*i)%mod;
14 s2[i]=(s2[i-1]+3LL*i+1)%mod;
15 if (!vis[i]){
16 p[++p[0]]=i;
17 phi[i]=i-1;
18 }
19 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
20 vis[i*p[j]]=1;
21 if (i%p[j])phi[i*p[j]]=phi[i]*(p[j]-1);
22 else{
23 phi[i*p[j]]=phi[i]*p[j];
24 break;
25 }
26 }
27 }
28 scanf("%d",&T);
29 while (T--){
30 scanf("%s",s);
31 ll n=0;
32 for(int i=0;s[i];i++)n=n*10+(s[i]-'0');
33 for(m=1;(ll)m*m*m<=n;m++);
34 m-=2;
35 int ans=0;
36 for(int i=1;i<=m+1;i++)
37 if ((m+1)%i==0)ans=(ans+(n/i-((ll)(m+1)*(m+1)*(m+1)-1)/i)%mod*phi[i])%mod;
38 for(int i=1;i<=m;i++)ans=(ans+1LL*phi[i]*(1LL*i*s1[m/i]+s2[m/i]+mod))%mod;
39 printf("%d\n",ans);
40 }
41 }

[hdu6588]Function的更多相关文章

  1. 通过百度echarts实现数据图表展示功能

    现在我们在工作中,在开发中都会或多或少的用到图表统计数据显示给用户.通过图表可以很直观的,直接的将数据呈现出来.这里我就介绍说一下利用百度开源的echarts图表技术实现的具体功能. 1.对于不太理解 ...

  2. jsp中出现onclick函数提示Cannot return from outside a function or method

    在使用Myeclipse10部署完项目后,原先不出错的项目,会有红色的叉叉,JSP页面会提示onclick函数错误 Cannot return from outside a function or m ...

  3. JavaScript function函数种类

    本篇主要介绍普通函数.匿名函数.闭包函数 目录 1. 普通函数:介绍普通函数的特性:同名覆盖.arguments对象.默认返回值等. 2. 匿名函数:介绍匿名函数的特性:变量匿名函数.无名称匿名函数. ...

  4. 在ubuntu16.10 PHP测试连接MySQL中出现Call to undefined function: mysql_connect()

    1.问题: 测试php7.0 链接mysql数据库的时候发生错误: Fatal error: Uncaught Error: Call to undefined function mysqli_con ...

  5. jquery中的$(document).ready(function() {});

    当文档载入时执行function函数里的代码, 这部分代码主要声明,页面加载后 "监听事件" 的方法.例如: $(document).ready( $("a") ...

  6. Function.prototype.toString 的使用技巧

    Function.prototype.toString这个原型方法可以帮助你获得函数的源代码, 比如: function hello ( msg ){ console.log("hello& ...

  7. 转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38

    转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38http://space.itpub. ...

  8. [Xamarin] 透過Native Code呼叫 JavaScript function (转帖)

    今天我們來聊聊關於如何使用WebView 中的Javascript 來呼叫 Native Code 的部分 首先,你得先來看看這篇[Xamarin] 使用Webview 來做APP因為這篇文章至少講解 ...

  9. Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等

    功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...

随机推荐

  1. Spatial Analyst Tools(Spatial Analyst 工具)

    Spatial Analyst Tools 1.区域分析 # Process: 以表格显示分区几何统计 arcpy.gp.ZonalGeometryAsTable_sa("", & ...

  2. NOI 2021 部分题目题解

    最近几天复盘了一下NOI 2021,愈发发觉自己的愚蠢,可惜D2T3仍是不会,于是只写前面的题解 Day1 T1 可以发现,每次相当于将 \(x\to y\) 染上一种全新颜色,然后一条边是重边当且仅 ...

  3. SpringBoot入门07-Thymeleaf中显示ajax请求到的数据

    Thymeleaf中显示ajax请求所需依赖 <!--所需依赖--><dependency> <groupId>org.springframework.boot&l ...

  4. Salesforce 生命周期管理(一)应用生命周期浅谈

    本篇参考: https://trailhead.salesforce.com/en/content/learn/trails/determine-which-application-lifecycle ...

  5. 分布式系统ID

    Leaf--美团点评分布式ID生成系统 前言 在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识.如在美团点评的金融.支付.餐饮.酒店.猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需 ...

  6. C#特性知识图谱-一、委托

    一. 委托 1.1 委托定义 委托可以看成是一个方法的容器,将某一具体的方法装入后就可以把它当成方法一样调用.一个委托类型的变量可以引用任何一个满足其要求的方法.委托类似于C语言中的函数指针,但并不完 ...

  7. 对比7种分布式事务方案,还是偏爱阿里开源的Seata,真香!(原理+实战)

    前言 这是<Spring Cloud 进阶>专栏的第六篇文章,往期文章如下: 五十五张图告诉你微服务的灵魂摆渡者Nacos究竟有多强? openFeign夺命连环9问,这谁受得了? 阿里面 ...

  8. 理解ASP.NET Core - 路由(Routing)

    注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 Routing Routing(路由):更准确的应该叫做Endpoint Routing,负责 ...

  9. Scrum Meeting 11

    第11次例会报告 日期:2021年06月01日 会议主要内容概述: 汇报了进度,开始爆肝. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下记录仅为保证公开性: ...

  10. BUAA软工-结对项目作业

    结对项目作业 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 结对项目作业 我在这个课程的目标是 通过这门课锻炼软件开发能力和经验,强化与他人合作 ...