[Chen T. & Li L. Intriguing Properties of Contrastive Losses. arXiv preprint arXiv 2011.02803, 2020.]

普通的对比损失有一种广义的表示方法, 改变alignment和distribution项的权重比有何影响? 同时, 改用不同的先验分布会有什么影响?

另外作者还发现了一种特征压制的现象, 即对比损失会更容易抓住一些简单的特征(如果存在), 而忽视不易往往更为有效的特征, 且这种现象不会随着网络的大小, 训练的次数或者batch size等等因素变化而产生明显变化.

主要内容

广义对比损失

普通的对比损失

\[\mathcal{L} = -\frac{1}{n} \sum_{i, j \in \mathcal{MB}} \log \frac{\exp (\mathrm{sim}(z_i, z_j) / \tau)}{\sum_{k=1}^{2n} \mathbf{1}_{[k \not= i]}\exp (\mathrm{sim}(z_i, z_k) / \tau)},
\]

广义的对比损失

\[\mathcal{L} = -\frac{1}{n} \sum_{i, j} \mathrm{sim}(z_i, z_j) + \lambda \cdot \frac{1}{n} \sum_{i} \log \sum_{k=1}^{2n} \mathbf{1}_{k \not = i} \exp (\mathrm{sim} (z_i, z_k) / \tau).
\]

第一项为\(\mathcal{L}_{alignment}\), 第二项为\(\mathcal{L}_{distribution}\), 第一项会使得正样本之间靠近, 第二项使得负样本之间趋于一个先验分布, 普通的对比损失是以均匀分布为先验的(直观上这种情况下的熵最大). 从互信息的角度来理解:

\[I(X;Y) = H(X) - H(X|Y),
\]

\(H(X)\)对应\(\mathcal{L}_{distribution}\), \(-H(X|Y)\)对应\(\mathcal{L}_{alignment}\).

不同的先验

作者首先研究了不同的先验分布会有什么影响(其算法涉及到sliced wasserstein distance, 暂时不想了解):

如下图所示, 在CIFAR-10上差距不大, ImageNet上当projection head只有两层的时候有差距但是增加到三层的时候又没啥差距了.

不同的权重比\(\tau, \lambda\)

现在广义对比损失上有两个我们可以调节的参数, 包括temperature \(\tau\)和\(\lambda\).

如上图所示, 作者称二者的关系是相反的, 即较大的\(\tau\)往往需要较小的\(\lambda\), 较小的\(\tau\)往往需要较大的\(\lambda\).

Feature Suppression

作者发现比较简单的特征更容易被学习到, 且该部分特征会阻碍网络学习其他的更加复杂的特征.

DigitOnImageNet dataset

第一个实验是, 在一些图片上加上一些数字:

注: 这些数字是在augmentation之前加的, 也就是说正样本之间是会共享这部分数字信息的.

用这个数据集在

  1. 监督学习

  2. 对比学习, 并且变换\(\tau\)

可以发现, 这部分共享信息对于有监督训练分类网络(关于Imagenet)是几乎没有影响的. 但是在对比学习中, 随着数字的量的增加, 提取到的特征大部分是用于分类数字而不是占据更多共享信息的图片. 虽然小一点的\(\tau\)能够在一定程度上缓解这一状况. 这说明, 对比学习很容易被一些小的简单的共享信息所误导, 去学习一些简单的特征, 而且这些特征会阻碍进一步学习更复杂的特征.

RandBit dataset

这部分实验进一步说明, 这些简单特征甚至能够完全抹杀复杂的特征.

这部分数据集的构造方式是, 对普通的RGB图片添加新的channels, 每一层channel要么都是\(1\), 要么都是\(0\)(看代码似乎是这个意思, 不过此时共享的信息应该是\(n\)?).

结果如上图, 可以发现, 这一点点的几个bits的共享的信息就能够使得对比损失效果骤降甚至是完全失效, 且改变\(\tau\), batch size, 或者是先验分布, 以及训练的框架都不能有所改善.

代码

原文代码

Intriguing Properties of Contrastive Losses的更多相关文章

  1. Intriguing properties of neural networks

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! https://arxiv.org/abs/1312.6199v4 Abstract 深度神经网络是近年来在语音和视觉识别任务中取得最新性 ...

  2. (转) AdversarialNetsPapers

      本文转自:https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Pap ...

  3. ICLR 2014 International Conference on Learning Representations深度学习论文papers

    ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...

  4. (转) Awesome - Most Cited Deep Learning Papers

    转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...

  5. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  6. 瞎谈CNN:通过优化求解输入图像

    本文同步自我的知乎专栏: From Beijing with Love 机器学习和优化问题 很多机器学习方法可以归结为优化问题,对于一个参数模型,比如神经网络,用来表示的话,训练模型其实就是下面的参数 ...

  7. 用Caffe生成对抗样本

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/26122612 上篇文章 瞎谈CNN:通过优化求解输入图像 - 知乎专栏 中提到过对抗样本,这篇算是针对对抗样本的一个小 ...

  8. (转)Is attacking machine learning easier than defending it?

    转自:http://www.cleverhans.io/security/privacy/ml/2017/02/15/why-attacking-machine-learning-is-easier- ...

  9. My deep learning reading list

    My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部 ...

随机推荐

  1. 【AWS】【TroubleShooting】EC2实例无法使用SSH远程登陆(EC2 failure for SSH connection)

    1. Login AWS web console and check the EC2 instance.

  2. Python 基于python实现的http+json协议接口自动化测试框架源码(实用改进版)

    目录 1.      写在前面 2.      开发环境 3.      大致流程 4.      框架简介 5.      运行结果展示 6.      文件与配置 7.      测试接口实例 n ...

  3. LVS nat模型+dr模型

    nat模型 在 rs1 和 rs2  安装httpd  并配置测试页,启动 [root@rs1 ~]# yum install httpd -y[root@rs1 ~]# echo "thi ...

  4. 查看IP访问量的shell脚本汇总

    第一部分,1,查看TCP连接状态 netstat -nat |awk '{print $6}'|sort|uniq -c|sort -rn netstat -n | awk '/^tcp/ {++S[ ...

  5. ES在项目中的测试

    1.application.yml server: port: ${port:40100}spring: application: name: xc-search-servicexuecheng: e ...

  6. ActiveMQ(二)——ActiveMQ的安装和基本使用

    一:安装 2.启动之后成功 二.创建实例测试ActiveMQ 配置Maven所需的依赖 <dependency> <groupId>org.apache.activemq< ...

  7. 【C/C++】拔河比赛/分组/招商银行

    题目:小Z组织训练营同学进行一次拔河比赛,要从n(2≤n≤60,000)个同学中选出两组同学参加(两组人数可能不同).对每组同学而言,如果人数超过1人,那么要求该组内的任意两个同学的体重之差的绝对值不 ...

  8. JavaWeb的三大作用域

    三大作用域描述 名称 类型 描述 request HttpServletRequest 将数据放在请求作用域中,在一次请求中实现数据的共享,比如请求转发 session HttpSession 将数据 ...

  9. [Java Web 王者归来]读书笔记3

    第四章 JSP JSP基本语法 1 JSP中嵌入Java 代码 <% Java code %> 2 JSP中输出 <%= num %> 3 JSP 中的注释 <%-- - ...

  10. box-shadow(盒子阴影)

    box-shadow 属性可以设置一个或多个下拉阴影的框 可以在同一个元素上设置多个阴影效果,并用逗号将他们分隔开.该属性可设置的值包括阴影的X轴偏移量.Y轴偏移量.模糊半径.扩散半径和颜色. 语法: ...