目录

Exponential moving average (EMA) 是一个非常有用的trick, 起到加速训练的作用. 近来发现, 该技巧还可以用于提高网络鲁棒性(约1% ~ 2%). EMA的流程很简单, \(f(\cdot;\theta)\)是我们用于训练的网络, 则在每次迭代结束后进行:

\[\theta' = \alpha \cdot \theta' + (1 - \alpha) \cdot \theta,
\]

其中\(\theta'\)是\(f'(\cdot; \theta')\)网络的参数, \(f', f\)的网络初始化是一致的, 另外\(f'\)的网络参数的更新仅仅通过上式.

一般情况下, 对抗训练用\(f(\cdot; \theta)\)来生成对抗样本, 即

\[x_{adv} := \arg \max_{\|x'-x\|\le \epsilon} \mathcal{L}(f(x'),y),
\]

来获得, 而我想的能不能

\[x_{adv} := \arg \max_{\|x'-x\|\le \epsilon} \mathcal{L}(f'(x'),y).
\]

背后的直觉是, \(f'\)相较于\(f\)更为平稳, 则由其产生的对抗样本的分布更加稳定, 则\(f\)拟合起来会不会更加容易?

我在一个8层的网络上进行测试, 结果不如人意:

设置

model cifar
dataset CIFAR-10
attack PGD
epsilon 8/255
stepsize 2/255
steps 10
loss cross entropy
optimizer sgd
momentum 0.9
beta1 0.9
beta2 0.999
weight_decay 2e-4
leaning_rate 0.1
learning_policy AT
epochs 200
batch_size 128
transform default
seed 1
alpha 0.999

结果

Accuracy Robustness
EMA*
EMA
EMA + GroupNorm

上图中, EMA是原本的逻辑, 可见其的确能加速训练(Shadow表示\(f'\)), 虽然最后的结果是降了点, 这主要是参数没调好, 毕竟对抗训练很容易过拟合. 但是我们的直接却完全不起作用, 这让我非常困惑, 因为, 我料想的最差的结果, 也应当是鲁棒性不怎样, 不能精度和鲁棒性都很差, 因为虽然是通过\(f'\)生成的对抗样本, 这些对抗样本依旧是满足$|x_{adv} - x|_{\infty} \le 8 /255 $ 的,所以应该是没问题的.

于是我又尝试让\(\alpha\)由\(0\)慢慢增加到\(0.999\), 但是结果依然不容乐观. 我料想是batch normalization的问题, 于是换了group normlization:

虽然结果似乎表明我们的直觉完全是错误的, 但是还是体会到了 normalization 的重要性, BN很难应对不同分布.

EMA的更多相关文章

  1. 股票中的数学:EMA的推导01

    说明:本人并不炒股,原因很简单:没钱.当然了,作为一名IT工作者,因为工作需要和个人兴趣,就有了本系列文章.阅读本系列文章不需要任何高深的知识,哪怕是一个像我这样从未真正炒过股的人也没关系.但本文还是 ...

  2. EMA计算的C#实现(c# Exponential Moving Average (EMA) indicator )

    原来国外有个源码(TechnicalAnalysisEngine src 1.25)内部对EMA的计算是: var copyInputValues = input.ToList(); for (int ...

  3. 新修改了EMA的计算方法,合并线性回归率的计算。和通达信的结果一模一样

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  4. WeQuant交易策略—EMA指标

    策略名称:EMA指标策略关键词:指数移动平均.双均线.动态止损.方法:1)用快慢两条指数移动平均线的交叉作为买入卖出信号:2)快线自下而上穿过慢线,买入:自上而下穿过慢线,卖出:3)持仓期间计算净值的 ...

  5. 新概念英语(1-9)How is Ema?

    A:Hello Helen. B:Hi Steven. A:How are you today? B:I'm very well, thank you. And you? A:I'm fine tha ...

  6. tensorflow(3):神经网络优化(ema,regularization)

    1.指数滑动平均 (ema) 描述滑动平均: with tf.control_dependencies([train_step,ema_op]) 将计算滑动平均与 训练过程绑在一起运行 train_o ...

  7. 多种移动平均计算总结(MA,EMA,SMA,DMA,TMA,WMA)

    多种移动平均计算总结 股票期货里面经常会遇到这些公式,通达信,同花顺,文华,基本都有.作为一个程序员觉得网上比较的思路不清晰,在此做个总结,一目了然. 一.函数简介 MA(x,n)-移动平均,是最简单 ...

  8. 【优化技巧】指数移动平均EMA的原理

    前言 在深度学习中,经常会使用EMA(exponential moving average)方法对模型的参数做平滑或者平均,以求提高测试指标,增加模型鲁棒性. 参考 1. [优化技巧]指数移动平均(E ...

  9. EMA指数平滑移动平均

    英文参考:http://www.incrediblecharts.com/indicators/exponential_moving_average.php Exponential moving av ...

  10. EMA algorithm: https://blog.csdn.net/m0_38106113/article/details/81542863

    EMA algorithm: https://blog.csdn.net/m0_38106113/article/details/81542863

随机推荐

  1. 大规模 K8s 集群管理经验分享 · 上篇

    11 月 23 日,Erda 与 OSCHINA 社区联手发起了[高手问答第 271 期 -- 聊聊大规模 K8s 集群管理],目前问答活动已持续一周,由 Erda SRE 团队负责人骆冰利为大家解答 ...

  2. VSCode+Maven+Hadoop开发环境搭建

    在Maven插件的帮助下,VSCode写Java其实非常方便.这一讲我们介绍如何借助maven用VScode搭建Hadoop开发环境. 1.Java环境安装 首先我们需要搭建好Java开发环境.我们需 ...

  3. HDFS【概述、数据流】

    目录 概述 定义 优缺点 HDFS组成架构 HDFS文件块大小 HDFS数据流 写数据 读数据 网络拓扑-节点距离计算 机架感知(写数据的副本存储节点选择) 概述 定义 HDFS是一个分布式文件管理系 ...

  4. NuxtJS的AsyncData和Fetch使用详解

    asyncData 简介 asyncData 可以用来在客户端加载 Data 数据之前对其做一些处理,也可以在此发起异步请求,提前设置数据,这样在客户端加载页面的时候,就会直接加载提前渲染好并带有数据 ...

  5. Oracle中dbms_random包详解

    Oracle之DBMS_RANDOM包详解参考自:https://www.cnblogs.com/ivictor/p/4476031.html https://www.cnblogs.com/shen ...

  6. EasyExcel读写Excel

    使用过 poi 的开发同学可能都有此体会,每次都要写一坨代码,最后的代码如下面一样: 这样的代码是不是又臭又长?当字段数量多的时候,一不小心还容易写错.阿粉还记得当初使用 poi 导出一个二十多字段的 ...

  7. 通过 Ajax 发送 PUT、DELETE 请求的两种实现方式

    一.普通请求方法发送 PUT 请求 1. 如果不用 ajax 发送 PUT,我们可以通过设置一个隐藏域设置 _method 的值,如下: <form action="/emps&quo ...

  8. Java中的循环结构进阶

    循环结构进阶 学习本章用到的单词 triangle:三角形 circle:圆形 diamond:钻石 password:密码 row:行.排列 二重循环结构 简单的说:二重循环就是一个循环体内又包含另 ...

  9. Linux下安装Calibre

    目录 一.介绍 二.安装 三.测试 四.报错处理 一.介绍 Calibre是基于python的电子书制作软件,可导出PDF.EPUB.MOBI.Word格式电子书. 二.安装 yum -y insta ...

  10. 【Web】BUUCTF-warmup(CVE-2018-12613)

    BUUCTF 的第一题,上来就给搞懵了.. .这要是我自己做出来的,岂不是相当于挖了一个 CVE ?(菜鸡这样安慰自己)   问题在 index.php 的 55~63 行 // If we have ...