Leetcode No.53 Maximum Subarray(c++实现)
1. 题目
1.1 英文题目
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
1.2 中文题目
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
1.3输入输出
输入 | 输出 |
---|---|
nums = [-2,1,-3,4,-1,2,1,-5,4] | 6 |
nums = [1] | 1 |
nums = [5,4,-1,7,8] | 23 |
1.4 约束条件
- 1 <= nums.length <= 3 * 104
- -105 <= nums[i] <= 105
2. 实验平台
IDE:VS2019
IDE版本:16.10.1
语言:c++11
3. 程序
3.1 测试程序
#include "Solution.h"
#include <vector> // std::vector
#include<iostream> // std::cout
using namespace std;
// 主程序
void main()
{
// 输入
vector<int> nums = { -100000 };
Solution solution; // 实例化Solution
int k = solution.maxSubArray(nums); // 主功能
// 输出
cout << k << endl;
}
3.2 功能程序
3.2.1 穷举遍历法
(1)代码
#pragma once
#include<vector> // std::vector
using namespace std;
//主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// 暴力求解
int maxValue = -100000;
for (int i = 0; i < nums.size(); i++) //遍历起始值
{
int nowSub = 0;
for (int j = i; j < nums.size(); j++) // 全部遍历一遍
{
nowSub += nums[j];
if (nowSub > maxValue) maxValue = nowSub;
}
}
return maxValue;
}
};
(2)解读
该方法是最容易想到的方法,暴力求解,运用滑动窗口法进行遍历,分别得到以某个为开头的序列进行求最大值,并随遍历的进行实时更新该最大值。复杂度为O(\(n^2\))。
3.2.2 动态规划法
(1)代码
#pragma once
#include<vector> // std::vector
using namespace std;
//主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// 动态规划(时间复杂度O(n),空间复杂度O(n))
int length = nums.size();
vector<int> dp(length); // 存储每次递归的最大值
dp[0] = nums[0];
for (int i = 1; i < length; i++)
dp[i] = max(dp[i - 1] + nums[i], nums[i], [](int a, int b) {return a > b ? a : b; }); // Lamda表达式
//求dp中的最大值
int maxSub = -100000;
for (auto j : dp) // c++11中基于范围的for循环(Range-based for loop)
if (maxSub < j)
dp[j] = maxSub;
return maxSub;
}
};
(2)思路
参考:https://zhuanlan.zhihu.com/p/85188269
3.2.3 kadane算法
(1)代码
#pragma once
#include<vector> // std::vector
using namespace std;
//主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// kadane算法(时间复杂度O(n),空间复杂度O(1))
int length = nums.size();
int maxSub = nums[0]; // 慢指针
int maxSubTemp = nums[0]; //快指针
for (auto i : nums)
{
maxSubTemp = max(maxSubTemp + nums[i], nums[i], [](int a, int b) {return a > b ? a : b; }); // Lamda表达式
if (maxSubTemp > maxSub) // 若当前最大值大于总最大值,则总最大值更新
maxSub = maxSubTemp;
}
return maxSub;
}
};
(2)解读
kadane算法是在动态规划法的基础上加上快慢指针法,快指针指向以i为结尾的子数组最大值之和,慢指针指向迄今为止的子数组最大值之和
3.3.4 分治法(divide and conquer)
(1)代码
pragma once
include // std::vector
//#include<limits.h> // INT_MIN整型最小值
include // std::max
using namespace std;
//主功能
class Solution {
public:
int maxSubArray(vector& nums) {
if (nums.empty()) return 0;
return helper(nums, 0, (int)nums.size() - 1);
}
int helper(vector& nums, int left, int right)
{
if (left >= right) return nums[left];
int mid = left + (right - left) / 2;
int lmax = helper(nums, left, mid - 1);
int rmax = helper(nums, mid + 1, right);
int mmax = nums[mid], t = mmax;
for (int i = mid - 1; i >= left; --i)
{
t += nums[i];
mmax = max(mmax, t);
}
t = mmax;
for (int i = mid + 1; i <= right; ++i)
{
t += nums[i];
mmax = max(mmax, t);
}
return max(mmax, max(lmax, rmax));
}
};
参考:https://www.cnblogs.com/grandyang/p/4377150.html
(2)解读
参考:https://www.jianshu.com/p/3a38d523503b
4. 相关知识
(1)滑动窗口法
滑动窗口其实就是选取部分序列作为窗口,窗口不停移动,直至找到答案,感觉这更像一种思想。
详细介绍可以参考:https://www.cnblogs.com/huansky/p/13488234.html
(2) Lamda表达式
Lamda表达式可以直接在需要调用函数的位置定义短小精悍的函数,而不需要预先定义好函数,但是不便于复用,适用于比较简单且不需要复用的函数。写法为:
func(input1,input2,[],(type1 parameter1,type2 parameter2){函数;})
详细介绍参考:https://blog.csdn.net/A1138474382/article/details/111149792
(3) 基于范围的for循环(Range-based for loop)
c++11中加入的新特性,类似于python,matlab等面向对象语言的for循环,写法为:
for(auto i:array){;}
详细介绍参考:https://blog.csdn.net/hailong0715/article/details/54172848
(4)kadane算法
参考:https://zhuanlan.zhihu.com/p/85188269
Leetcode No.53 Maximum Subarray(c++实现)的更多相关文章
- [Leetcode][Python]53: Maximum Subarray
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...
- Leetcode之53. Maximum Subarray Easy
Leetcode 53 Maximum Subarray Easyhttps://leetcode.com/problems/maximum-subarray/Given an integer arr ...
- 【LeetCode】53. Maximum Subarray (2 solutions)
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- 【一天一道LeetCode】#53. Maximum Subarray
一天一道LeetCode系列 (一)题目 Find the contiguous subarray within an array (containing at least one number) w ...
- 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...
- LeetCode OJ 53. Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- [leetcode DP]53. Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 【Leetcode】53. Maximum Subarray
题目地址: https://leetcode.com/problems/maximum-subarray/description/ 题目描述: 经典的求最大连续子数组之和. 解法: 遍历这个vecto ...
- 53. Maximum Subarray【leetcode】
53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...
随机推荐
- python split方法
split方法说明: split方法通过指定分隔符对字符串进行切片,如果参数num有指定值,则分隔num+1个子字符串 split()方法语法: 1 str.split(str="&qu ...
- unity中UI坐标转3d世界坐标
方法: public static Vector3 UIScreenToWorldPoint(Vector3 uiPostion) { uiPostion = UICamera.mainCamera. ...
- Question&&Answer
1.使用Navicat连接Ubuntu上面的MySql数据库失败 解决办法:Navicat版本的问题,尝试换用更高版本的Navicat解决了问题(当时使用了Navicat Premium_11.2.7 ...
- Selenium3自动化测试【18】XPath定位元素(2)
层级与属性结合定位 如果被定为的元素,无法通过自身属性来唯一标识自己,此时可以考虑借助上级元素来定位自己.举生活中的例子,一个婴儿刚出生,还没有姓名与身份证号,此时给婴儿进行检查时往往会标注为&quo ...
- SpringMVC=>解决JSON乱码问题
<!-- 解决JSON乱码问题 --> <mvc:annotation-driven> <mvc:message-converters register-defaults ...
- RMAN-20208: UNTIL CHANGE is before RESETLOGS change
执行recover操作时: RMAN> recover database; Starting recover at 28-NOV-19 using channel ORA_DISK_1 ...
- Python+Selenium - 键盘操作
导包代码: from selenium.webdriver.common.keys import Keys 用法: driver.find_element("id","k ...
- 关于YumRepo Error: All mirror URLs are not using ftp......报错的解决方法
https://blog.csdn.net/u013999945/article/details/69942941 解决了我的问题
- JUC并发包与容器类 - 面试题(一网打净,持续更新)
文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...
- 干货 | LuatOS BSP移植教程,简单到复制粘贴!!!
LuatOS本着自身的开源特性,可以很轻松的嵌入到很多微处理器和微控制器.今天简要讲下如何移植这套系统,上手比较简单,看完基本就会了. 要想做移植,就要先了解需要移植芯片的SDK,LuatOS依赖于F ...