Solution -「Gym 102759G」LCS 8
\(\mathcal{Description}\)
Link.
给定 \(m\),和长度为 \(n\),字符集为大写字母的字符串 \(s\),求字符集相同且等长的字符串 \(t\) 的数量,使得 \(s,t\) 的 LCS 长度不小于 \(n-m\)。答案模 \((10^9+7)\)。
\(n\le5\times10^4\),\(m\le3\)。
\(\mathcal{Solution}\)
有个傻瓜怕不是忘了 DP of DP 这种东西。
LCS 的 DP 信息是很方便压缩储存的,在决策 \(t_{i+1}\) 时,我们希望知道 \(g_{i,\max\{0,i-m\}..\min\{n,i+m\}}\)(\(g_{i,j}\) 即 \(s[:i]\) 和 \(t[:j]\) 的 LCS),记录第一个位置和其对应下标的差值(不超过 \(m\))以及后面位置的差分(\(01\) 状态),可以得到一个 \((m+1)2^{2m}\) 的压缩,转移枚举在这 \(\mathcal O(m)\) 个内的字符,整体转移不在的字符,最劣复杂度为 \(\mathcal O(nm^22^{2m})\),不过明显跑不满。
\(\mathcal{Code}\)
写得很丑就试了 qwq。
/*~Rainybunny~*/
#include <cstdio>
#include <cassert>
#include <cstring>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
const int MAXN = 5e4, MAXM = 3, MOD = 1e9 + 7;
int n, m, f[2][MAXM + 1][1 << 2 * MAXM];
char str[MAXN + 5];
/*
f(i,i-m), f(i,j-m+1), ..., f(i,i+m)
x , +[0] , +[...], +[2m-1]
*/
inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int imax( const int a, const int b ) { return a < b ? b : a; }
inline int mul( const int a, const int b ) { return int( 1ll * a * b % MOD ); }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
int main() {
scanf( "%s %d", str + 1, &m ), n = int( strlen( str + 1 ) );
str[0] = -1; rep ( i, 1, n ) str[i] -= 'A';
f[0][0][0] = 1;
for ( int i = 0, sta = 0; i < n; ++i, sta ^= 1 ) {
rep ( j, 0, m ) rep ( S, 0, ( 1 << 2 * m ) - 1 ) {
int& cur = f[sta][j][S];
if ( !cur ) continue;
// printf( "f(%d,%d,%d)=%d\n", i, j, S, cur );
static bool vis[26] = {}; int cnt = 0;
int tp = imax( i - m, 0 ), sp = imax( i - m + 1, 0 ), u, v;
rep ( t, sp, imin( i + m + 1, n ) ) if ( t && !vis[str[t]] ) {
int c = str[t]; vis[c] = true, ++cnt;
int las[2] = { imax( i - m, 0 ) - j, 0 }, fir = 0, T = 0;
// f(i,j)=max{f(i-1,j),f(i,j-1),f(i-1,j-1)+1}.
rep ( k, sp, imin( i + m + 1, n ) ) {
u = las[0] + ( S >> ( k - tp - 1 ) & 1 );
v = imax( imax( las[1], u ), las[0] + ( str[k] == c ) );
if ( k == sp ) {
fir = k - v;
if ( fir > m ) break;
} else T |= ( v > las[1] ) << ( k - sp - 1 );
las[0] = u, las[1] = v;
}
if ( fir <= m ) addeq( f[!sta][fir][T], cur );
}
{
int las[2] = { imax( i - m, 0 ) - j, 0 }, fir = 0, T = 0;
rep ( k, sp, imin( i + m + 1, n ) ) {
u = las[0] + ( S >> ( k - tp - 1 ) & 1 );
v = imax( las[1], u );
if ( k == sp ) {
fir = k - v;
if ( fir > m ) break;
} else T |= ( v > las[1] ) << ( k - sp - 1 );
las[0] = u, las[1] = v;
}
if ( fir <= m ) addeq( f[!sta][fir][T], mul( cur, 26 - cnt ) );
}
rep ( t, sp, imin( i + m + 1, n ) ) if ( t ) vis[str[t]] = false;
cur = 0;
}
}
int ans = 0;
rep ( i, 0, m ) rep ( S, 0, ( 1 << 2 * m ) - 1 ) {
// if ( f[n & 1][i][S] )
// printf( "f(%d,%d,%d)=%d\n", n, i, S, f[n & 1][i][S] );
assert( !f[n & 1][i][S] || !( S >> m ) );
if ( imax( n - m, 0 ) - i + __builtin_popcount( S ) >= n - m ) {
addeq( ans, f[n & 1][i][S] );
}
}
printf( "%d\n", ans );
return 0;
}
Solution -「Gym 102759G」LCS 8的更多相关文章
- Solution -「Gym 102979E」Expected Distance
\(\mathcal{Description}\) Link. 用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...
- Solution -「Gym 102979L」 Lights On The Road
\(\mathcal{Description}\) Link. 给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...
- Solution -「Gym 102956F」Find the XOR
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...
- Solution -「Gym 102956B」Beautiful Sequence Unraveling
\(\mathcal{Description}\) Link. 求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...
- Solution -「Gym 102956F」Border Similarity Undertaking
\(\mathcal{Description}\) Link. 给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...
- Solution -「Gym 102956A」Belarusian State University
\(\mathcal{Description}\) Link. 给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...
- Solution -「Gym 102798I」Sean the Cuber
\(\mathcal{Description}\) Link. 给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数. 数据组数 \(T\le2.5\times10^5\). ...
- Solution -「Gym 102798K」Tree Tweaking
\(\mathcal{Description}\) Link. 给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...
- Solution -「Gym 102798E」So Many Possibilities...
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...
随机推荐
- vert.x框架与tomcat的关系
1.前言 大学4年,老师唯一让我们学习的web服务器是tomcat,配置方式是先从官网下载阿帕奇的tomcat文件,然后在开发平台导入,然后再配置web.xml等文件, 是一个可同步可异步请求的服务器 ...
- react中antd+css Module一起使用
antd 和 css modules 不能混用,针对antd的css 单独写一条loader的规则,不开启 css modules. 使用 exclude 和 include 配置参考(https:/ ...
- SQL高级优化(二)之MySQL架构
一.架构 想要学好SQL优化就必须从对应数据库的基本架构开始学习 架构图如下 二.架构分析 1. 连接管理与安全验证 MySQL有连接池(Connection Pool)管理客户端的连接. ...
- markdownFormat
对文档编辑主要还是用wps,因为以前毕业论文都是用的它来编排(刚开始用wps毕业论文的时候真的是用的想吐,感觉非常不好用,而且功能太多但对于自己需要的功能又偏偏找不到),用过几次后还觉得用它编辑文 ...
- elementui-日期选择器时间清空报错踩坑
今天在项目中遇到了这个大坑 具体问题:在日期清空时会报错 解决方法:给日期绑定的值添加监听
- 在pyqt5中展示pyecharts生成的图像
技术背景 虽然现在很少有人用python去做一些图形化的界面,但是不得不说我们在日常大部分的软件使用中都还是有可视化与交互这样的需求的.因此pyqt5作为一个主流的python的GUI框架地位是非常重 ...
- 《剑指offer》面试题25. 合并两个排序的链表
问题描述 输入两个递增排序的链表,合并这两个链表并使新链表中的节点仍然是递增排序的. 示例1: 输入:1->2->4, 1->3->4 输出:1->1->2-> ...
- 豆瓣爬虫——通过json接口获取数据
最近在复习resqusts 爬虫模块,就重新写了一个豆瓣爬虫,这个网页从HTML 源码上来看是没有任何我想要的信息的,如下图所示: 这是网页视图,我在源码中查找影片信息,没有任何信息,如图: 由此我判 ...
- Qt之进入和出去和关闭事件
widget.h: #ifndef WIDGET_H #define WIDGET_H #include <QWidget> #include<QEvent> class Wi ...
- 带你十天轻松搞定 Go 微服务系列(六)
序言 我们通过一个系列文章跟大家详细展示一个 go-zero 微服务示例,整个系列分十篇文章,目录结构如下: 环境搭建 服务拆分 用户服务 产品服务 订单服务 支付服务(本文) RPC 服务 Auth ...