目录

前面介绍了在Keil5和PlatformIO环境下使用FwLib_STC8, 接下来以STC8H系列为主, 结合demo中的演示用例介绍ADC(模数转换)

STC8G和STC8H的ADC模数转换

STC8G和STC8H的ADC部分在寄存器设置上基本上一致, 但是不同型号对应的通道编号, 通道数量和精度有区别

通道数量和精度

对应STC8G/STC8H的各个系列的通道数量和精度如下.

产品线 ADC 分辨率 ADC 通道数
STC8H1K08 系列 10 位 9 通道
STC8H1K28 系列 10 位 12 通道
STC8H3K64S4 系列 12 位 12 通道
STC8H3K64S2 系列 12 位 12 通道
STC8H8K64U 系列 12 位 15 通道
STC8H2K64T 系列 12 位 15 通道
STC8H4K64TLR 系列 12 位 15 通道
STC8H4K64TLCD 系列 12 位 15 通道
STC8H4K64LCD 系列 12 位 15 通道

通道的选择使用寄存器ADC_CONTR的低4位, 对应STC8G/STC8H的各个系列, 这个寄存器的数值对应的通道如下

STC8H1K28 STC8H1K08 STC8H3K64S4
STC8H3K64S2
STC8H8K64U
STC8H2K64T
STC8H4K64TLR
STC8H4K64TLCD
STC8H4K64LCD
STC8G1K08A STC8G1K08
STC8G1K08T
STC8G2K64S4
STC8G2K64S2
0000 P1.0/ADC0 P1.0/ADC0 P1.0/ADC0 P1.0/ADC0 P1.0/ADC0 P3.0/ADC0 P1.0/ADC0 P1.0/ADC0
0001 P1.1/ADC1 P1.1/ADC1 P1.1/ADC1 P1.1/ADC1 P1.1/ADC1 P3.1/ADC1 P1.1/ADC1 P1.1/ADC1
0010 P1.2/ADC2 N/A P1.2/ADC2 P5.4/ADC2 P5.4/ADC2 P3.2/ADC2 P1.2/ADC2 P1.2/ADC2
0011 P1.3/ADC3 N/A N/A P1.3/ADC3 P1.3/ADC3 P3.3/ADC3 P1.3/ADC3 P1.3/ADC3
0100 P1.4/ADC4 N/A N/A P1.4/ADC4 P1.4/ADC4 P5.4/ADC4 P1.4/ADC4 P1.4/ADC4
0101 P1.5/ADC5 N/A N/A P1.5/ADC5 P1.5/ADC5 P5.5/ADC5 P1.5/ADC5 P1.5/ADC5
0110 P1.6/ADC6 N/A P1.6/ADC6 P1.6/ADC6 P6.2/ADC6 N/A P1.6/ADC6 P1.6/ADC6
0111 P1.7/ADC7 N/A P1.7/ADC7 P1.7/ADC7 P6.3/ADC7 N/A P1.7/ADC7 P1.7/ADC7
1000 P0.0/ADC8 P3.0/ADC8 P0.0/ADC8 P0.0/ADC8 P0.0/ADC8 N/A P3.0/ADC8 P0.0/ADC8
1001 P0.1/ADC9 P3.1/ADC9 P0.1/ADC9 P0.1/ADC9 P0.1/ADC9 N/A P3.1/ADC9 P0.1/ADC9
1010 P0.2/ADC10 P3.2/ADC10 P0.2/ADC10 P0.2/ADC10 P0.2/ADC10 N/A P3.2/ADC10 P0.2/ADC10
1011 P0.3/ADC11 P3.3/ADC11 P0.3/ADC11 P0.3/ADC11 P0.3/ADC11 N/A P3.3/ADC11 P0.3/ADC11
1100 N/A P3.4/ADC12 P0.4/ADC12 P0.4/ADC12 P0.4/ADC12 N/A P3.4/ADC12 P0.4/ADC12
1101 N/A P3.5/ADC13 P0.5/ADC13 P0.5/ADC13 P0.5/ADC13 N/A P3.5/ADC13 P0.5/ADC13
1110 N/A P3.6/ADC14 P0.6/ADC14 P0.6/ADC14 P0.6/ADC14 N/A P3.6/ADC14 P0.6/ADC14
1111 1.19Vref 1.19Vref 1.19Vref 1.19Vref 1.19Vref 1.19Vref 1.19Vref 1.19Vref

转换结果的对齐格式

ADC采样的精度实际上是不能设置的, 采样都是用的当前型号的最大精度, 结果存储在[ADC_RES, ADC_RESL]这两个寄存器. 为方便不同场合使用不同精度的结果, 可以将结果设置为左对齐或右对齐.

  • 当设置为左对齐时, 可以只取ADC_RES的值(8位), 忽略最后两位.
  • 当设置位右对齐时, 根据实际的精度, 可以取ADC_RES的低4位(12位精度)或低2位(10位精度), 加上ADC_RESL得到最终结果.

转换的时间消耗

一个完整的 ADC 转换时间为 = Tsetup + Tduty + Thold + Tconvert

  • Tsetup: 转换的通道切换时间, 可以设置为1个或2个ADC时钟周期
  • Tduty: 转换的采样时间, 默认是最低的11个ADC时钟, 最高为32个ADC时钟周期
  • Thold: 通道选择的保持时间, 可以选择1, 2, 3, 4个ADC时钟周期
  • Tconvert: 转换时间是固定的, 10bit精度是10个ADC时钟, 12bit精度是12个ADC时钟

以上的时间单位都是ADC时钟周期, 每个ADC时钟周期占用系统时钟(SYSCLK)的数量是可以设置的, 使用ADCCFG寄存器的低三位, 可以设置为最低2个系统时钟周期到最高32个系统时钟周期

对于转换的最高频率, DS上写了全局限制

  • 10 位 ADC 的速度不能高于 500KHz
  • 12 位 ADC 的速度不能高于 800KHz
  • 转换的采样时间不能小于 10,建议设置为 15

硬件连线

STC8G/STC8H的ADC硬件连线有两种: 带AVcc,AGrnd和不带AVcc,AGrnd

带 AVcc,AGrnd

高端型号STC8H3K64S2系列, 例如会带这两个pin脚, 分别对应的是转换目标的电压参考值和对地参考值. 对于普通使用, 这两个可以直接接到VCC和GND, 连线为

   AGrnd   -> GND
AVcc -> VCC
AVref -> VCC
Vcc -> VCC
Gnd -> GND
ADC1 -> 采样点

不带 AVcc,AGrnd

低端型号以及STC8G系列不带这两个pin, 只需要接AVref, 采样点与MCU共地连接, 连线为

   AVref   -> VCC
Vcc -> VCC
Gnd -> GND
ADC1 -> Test voltage

演示用例说明

以下演示用例, 基于 FwLib_STC8, 源代码位于 FwLib_STC8/demo/adc 目录, 可以自行下载或查看. 因为版本演变, 代码可能与仓库中的代码有出入, 以仓库中的最新版本为准.

关于如何运行演示用例, 可以参考前面介绍的Keil C51和VSCode PlatformIO的配置说明

使用ADC1进行8位ADC转换, 主动查询(polling)方式

下面的例子, 使用主动查询的方式每隔0.1秒对P1.1口进行ADC转换, 精度8位, 将结果输出至串口

main.c代码

#include "fw_hal.h"

void main(void)
{
uint8_t res;
// 调整系统频率, 如果使用STC-ISP设定频率, 需要将这行注释掉
SYS_SetClock();
// 用于结果输出
UART1_Config8bitUart(UART1_BaudSource_Timer2, HAL_State_ON, 115200);
// 将 ADC1(GPIO P1.1) 设为高阻输入
GPIO_P1_SetMode(GPIO_Pin_1, GPIO_Mode_Input_HIP);
// 使用通道: ADC1
ADC_SetChannel(0x01);
// 设置ADC时钟 = SYSCLK / 2 / (1+1) = SYSCLK / 4
ADC_SetClockPrescaler(0x01);
// 设置结果左对齐, 只需要取值 ADC_RES
ADC_SetResultAlignmentLeft();
// 开启ADC电源
ADC_SetPowerState(HAL_State_ON); while(1)
{
// 开始转换
ADC_Start();
// 等待两个系统时钟
NOP();
NOP();
// 检查转换结果标志位是否置位
while (!ADC_SamplingFinished());
// 清除结果标志位
ADC_ClearInterrupt();
// 读取结果
res = ADC_RES; // 通过串口1输出
UART1_TxString("Result: ");
UART1_TxHex(res);
UART1_TxString("\r\n");
// 等待100ms后再次进行转换
SYS_Delay(100);
}
}

使用ADC1进行10位/12位ADC转换, 中断(interrupt)方式

下面的例子, 使用中断的方式对P1.1口进行ADC连续转换, 精度10位(或12位, MCU型号不同精度不同), 每隔0.1秒将结果输出至串口

#include "fw_hal.h"

// 16位变量用于记录转换结果
uint16_t res; // 处理中断的方法, 使用宏定义保证Keil C51和SDCC的兼容性
INTERRUPT(ADC_Routine, EXTI_VectADC)
{
// 先清除中断位
ADC_ClearInterrupt();
// 结果低8位
res = ADC_RESL;
// 结果高8位
res |= (ADC_RES & 0x0F) << 8;
// 再次启动, 使得ADC连续转换,
ADC_Start();
} void main(void)
{
// 设置系统频率
SYS_SetClock();
// 结果输出
UART1_Config8bitUart(UART1_BaudSource_Timer2, HAL_State_ON, 115200);
// 设置P11高阻输入模式
GPIO_P1_SetMode(GPIO_Pin_1, GPIO_Mode_Input_HIP);
// 使用通道: ADC1
ADC_SetChannel(0x01);
// ADC时钟 = SYSCLK / 2 / (1+15) = SYSCLK / 32
ADC_SetClockPrescaler(0x0F);
// 右对齐, 方便转换为双字节的结果
ADC_SetResultAlignmentRight();
// 开启全局中断和ADC中断
EXTI_Global_SetIntState(HAL_State_ON);
EXTI_ADC_SetIntState(HAL_State_ON);
// 开启ADC电源
ADC_SetPowerState(HAL_State_ON);
// 开始ADC转换
ADC_Start(); while(1)
{
// 转换结果输出
UART1_TxString("Result: ");
UART1_TxHex(res >> 8);
UART1_TxHex(res & 0xFF);
UART1_TxString("\r\n");
SYS_Delay(100);
}
}

使用ADC1, ADC2双通道进行转换, 中断(interrupt)方式

下面介绍一个更实用的例子, 中断形式进行多通道ADC转换, 可以用于无线小车遥控, 双声道音频采样等

#include "fw_hal.h"

// 用于记录当前采样的通道编号
uint8_t pos;
// 记录各通道的采样结果
uint16_t res[2]; // 中断处理方法
INTERRUPT(ADC_Routine, EXTI_VectADC)
{
ADC_ClearInterrupt();
// 记录采样结果
res[pos] = ADC_RESL;
res[pos] |= (ADC_RES & 0x0F) << 8; // 切换到下一个通道
pos = (pos+1) & 0x1;
if (pos == 0)
{
/**
* 在采样频率较高时, 加上这两句能提高精度. 其机制是切换到开漏模式清除采样口上的残留电压
GPIO_P1_SetMode(GPIO_Pin_1, GPIO_Mode_InOut_OD);
GPIO_P1_SetMode(GPIO_Pin_1, GPIO_Mode_Input_HIP);
*/
ADC_SetChannel(0x01);
}
else
{
/**
* Uncomment these lines in high speed ADC
GPIO_P1_SetMode(GPIO_Pin_2, GPIO_Mode_InOut_OD);
GPIO_P1_SetMode(GPIO_Pin_2, GPIO_Mode_Input_HIP);
*/
ADC_SetChannel(0x02);
}
ADC_Start();
} // 下面的代码和前面的基本上是一样的, 就不详细注释了
void main(void)
{
SYS_SetClock();
// For debug print
UART1_Config8bitUart(UART1_BaudSource_Timer2, HAL_State_ON, 115200);
// Channel: ADC1
ADC_SetChannel(0x01);
// ADC Clock = SYSCLK / 2 / (1+15) = SYSCLK / 32
ADC_SetClockPrescaler(0x0F);
// Right alignment, high 2-bit in ADC_RES, low 8-bit in ADC_RESL
ADC_SetResultAlignmentRight();
// Enable interrupts
EXTI_Global_SetIntState(HAL_State_ON);
EXTI_ADC_SetIntState(HAL_State_ON);
// Turn on ADC power
ADC_SetPowerState(HAL_State_ON);
// Set ADC1(P1.1), ADC2(P1.2) HIP
GPIO_P1_SetMode(GPIO_Pin_1|GPIO_Pin_2, GPIO_Mode_Input_HIP);
// Start ADC
ADC_Start(); while(1)
{
UART1_TxString("Result: ");
UART1_TxHex(res[0] >> 8);
UART1_TxHex(res[0] & 0xFF);
UART1_TxChar(' ');
UART1_TxHex(res[1] >> 8);
UART1_TxHex(res[1] & 0xFF);
UART1_TxString("\r\n");
SYS_Delay(100);
}
}

结束

以上就是STC8H使用FwLib_STC8封装库进行ADC转换的演示用例说明. 在实际使用中, 主动查询(polling)方式下的延时时间精度不高,

如果对采样的时间间隔精度有要求, 建议使用中断的形式.

STC8H开发(三): 基于FwLib_STC8的模数转换ADC介绍和演示用例说明的更多相关文章

  1. STM32 USB开发(三) 基于F105RBT6核心板开发的自定义HID收发(FS)

    硬件设计 该核心板的USB插口有两个,一个是用于USB Slave的,可以用来做HID设备,把模拟STM32模拟为U盘等:另一个是USB Host设备,可以对插上的U盘的数据进行读写. 图中J2是Mi ...

  2. ArcSDE SDK For Java二次开发介绍、演示样例

    在一个工作中,遇到了须要java后台来查询ArcGIS 中用到的Oracle数据库空间数据,因为对ArcGIS空间数据首次接触,仅仅知道Oracle能够使用ST_GEOMETRY字段存储,例如以下图 ...

  3. STC8H开发(四): FwLib_STC8 封装库的介绍和注意事项

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

  4. STC8H开发(六): SPI驱动ADXL345三轴加速度检测模块

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

  5. STC8H开发(七): I2C驱动MPU6050三轴加速度+三轴角速度检测模块

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

  6. STC8H开发(五): SPI驱动nRF24L01无线模块

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

  7. STC8H开发(八): NRF24L01无线传输音频(对讲机原型)

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

  8. STC8H开发(九): STC8H8K64U模拟USB HID外设

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

  9. STC8H开发(十): SPI驱动Nokia5110 LCD(PCD8544)

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

随机推荐

  1. Python把两个列表索引相同的值相加

    方案一 list1=[1,2,3,4,5] list2=[6,7,8,9,10] list3=[] list3=[i + j for i, j in zip(list1, list2)] print( ...

  2. 筛选(Project)

    <Project2016 企业项目管理实践>张会斌 董方好 编著 [视图]选项卡下有个[筛选器],筛选功能就在里面实现. 比如按[里程碑]筛选. 按[日期范围],再指定个起始日期和结束日期 ...

  3. springmvc整合redis

    1.引入依赖 2.在resources包下创建配置文件redis-context.xml 3.在spring-servlet文件引入redis配置文件

  4. CF734B Anton and Digits 题解

    Content 有 \(k_2\) 个 \(2\).\(k_3\) 个 \(3\).\(k_5\) 个 \(5\) 和 \(k_6\) 个 \(6\),你可以用这里面的数字来组成 \(256,32\) ...

  5. Add File as a Link on Visual Studio

    https://stackoverflow.com/questions/18963750/add-file-as-a-link-on-visual-studio-debug-vs-publish Ev ...

  6. win10使用照片查看器查看图片

    1.关于 演示环境: win10 1909 2.习惯win7的照片查看器 如果你习惯使用win7的照片查看器在win10查看照片,可以通过下面的注册表代码实现.方法:1.创建 后缀名为 .reg的文件 ...

  7. 【LeetCode】1042. Flower Planting With No Adjacent 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 图 日期 题目地址:https://leetcode ...

  8. 【LeetCode】115. Distinct Subsequences 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetc ...

  9. 【LeetCode】752. Open the Lock 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  10. 【LeetCode】399. Evaluate Division 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...