题解 「BZOJ2137」submultiple
题目大意
给出 \(M,k\) ,求出
\]
给出 \(P_i\),满足 \(n=\prod_{i=1}^{n}a_i^{P_i}\),其中 \(a_i\) 是第 \(i\) 个质数。
对于 \(45\%\) 的数据点满足 \(k\le 10^5\),对于其余数据点满足 \(k\le 12\) 。
思路
首先你发现答案就是:
\]
(因为约数个数是个积性函数)
然后你发现对于 \(45\%\) 的数据点可以直接暴力,然后另外一部分可以直接拉格朗日插值法解决。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 1000000007
#define int long long
#define MAXN 100005
int n,k,P,pre[MAXN];
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = a * a % mod) if (b & 1) res = res * a % mod;
return res;
}
int inv (int x){return qkpow (x,mod - 2);}
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int Sum (int x){//计算\sum_{i=1}^{x}i^k
if (x <= k + 1) return pre[x];
int ans = 0;
for (Int i = 0;i <= k + 1;++ i){
int mot = 1,son = 1;
for (Int j = 0;j <= k + 1;++ j)
if (i != j) mot = mot * (i + mod - j) % mod,son = son * (x + mod - j) % mod;
ans = (ans + pre[i] * son % mod * inv (mot) % mod) % mod;
ans = (ans % mod + mod) % mod;
}
return ans;
}
signed main(){
read (n,k),k %= (mod - 1);
if (k <= 12){//使用拉格朗日插值
pre[0] = qkpow (0,k);
for (Int i = 1;i <= k + 1;++ i) pre[i] = (pre[i - 1] + qkpow (i,k)) % mod;
int res = 1;for (Int i = 1;i <= n;++ i) read (P),P %= mod,res = res * Sum (P + 1) % mod;
write (res),putchar ('\n');
return 0;
}
int ans = 1;
pre[0] = qkpow (0,k);for (Int i = 1;i <= MAXN - 4;++ i) pre[i] = (pre[i - 1] + qkpow (i,k)) % mod;
for (Int i = 1;i <= n;++ i) read (P),P %= mod,ans = 1ll * ans * pre[P + 1] % mod;
write (ans),putchar ('\n');
return 0;
}
题解 「BZOJ2137」submultiple的更多相关文章
- 题解 「HDU6403」卡片游戏
link Description 桌面上摊开着一些卡牌,这是她平时很爱玩的一个游戏.如今卡牌还在,她却不在我身边.不知不觉,我翻开了卡牌,回忆起了当时一起玩卡牌的那段时间. 每张卡牌的正面与反面都各有 ...
- 题解 「SCOI2016」萌萌哒
link Description 一个长度为 $ n $ 的大数,用 $ S_1S_2S_3 \ldots S_n $表示,其中 $ S_i $ 表示数的第 $ i $ 位,$ S_1 $ 是数的最高 ...
- 题解 「SDOI2017」硬币游戏
题目传送门 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利. 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了. 同学们觉得要加强 ...
- 题解 「ZJOI2018」历史
题目传送门 Description 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 \(n\) 个城市,这 \(n\) 个城市被恰 ...
- 题解 「BZOJ3636」教义问答手册
题目传送门 Description 作为泉岭精神的缔造者.信奉者.捍卫者.传承者,Pear决定印制一些教义问答手册,以满足泉岭精神日益增多的信徒.Pear收集了一些有关的诗选.语录,其中部分内容摘录在 ...
- 题解「BZOJ4310」跳蚤
题目传送门 Description 现在有一个长度为 \(n\) 的字符串,将其划分为 \(k\) 段,使得这 \(k\) 段每一段的字典序最大子串中字典序最大的字符串字典序尽量小.求出这个字符串. ...
- 题解 「BZOJ2178」圆的面积并
题目传送门 题目大意 给出 \(n\) 个圆,求它们并的面积大小. \(n\le 10^3\) 思路 如果您不会自适应辛普森法,请戳这里学习 其实我们发现,如果我们设 \(f(x)\) 表示 \(x= ...
- 题解 - 「MLOI」小兔叽
小兔叽 \(\texttt{Link}\) 简单题意 有 \(n\) 个小木桩排成一行,第 \(i\) 个小木桩的高度为 \(h_i\),分数为 \(c_i\). 如果一只小兔叽在第 \(i\) 个小 ...
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
随机推荐
- Linux压缩解压 tar.gz格式的文件.查看tomcat是否运行
tar命令详解 -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用 ...
- MutationObserver API
1.概述 MutationObserver接口提供了监视对DOM树所做更改的能力.它被设计为旧的Mutation Events功能的替代品,该功能是DOM3 Events规范的一部分. 但是,它与Mu ...
- idea导出jar包及坑
导出基本步骤 1.打开项目结构,在artifact新建一个jar 2.然后填写主类和依赖 3.这里的坑: 4.查看 5.点击编译输出 6.得到jar包
- Shell 脚本如何输出帮助信息?
作者展示了一个技巧,将帮助信息写在 Bash 脚本脚本的头部,然后只要执行"脚本名 + help",就能输出这段帮助信息 https://samizdat.dev/help-mes ...
- 通过WebGoat学习java反序列化漏洞
首发于freebuff. WebGoat-Insecure Deserialization Insecure Deserialization 01 概念 本课程描述了什么是序列化,以及如何操纵它来执行 ...
- 并发编程之:JUC并发控制工具
大家好,我是小黑,一个在互联网苟且偷生的农民工. 在上一期我们讲了Thread.join()方法和CountDownLatch,这两者都可以做到等待一个线程执行完毕之后当前线程继续执行,并且Count ...
- angularjs实现购物清单
HTML: 1:要定义ng-app,在html上定义ng-app="App"; 2:在body上定义ng-controller="ToDoCtrl" 3: &l ...
- Java 常用 Collection 继承关系与接口实现
Java Collection List 接口 继承.接口实现关系: public interface List<E> extends Collection<E> 方法定义: ...
- [第六篇]——云服务器之Spring Cloud直播商城 b2b2c电子商务技术总结
云服务器 云服务器(Elastic Compute Service, ECS)是一种简单高效.安全可靠.处理能力可弹性伸缩的计算服务. 云服务器管理方式比物理服务器更简单高效,我们无需提前购买昂贵的硬 ...
- expression动态构成
http://blog.csdn.net/tastelife/article/details/7340205 http://blog.csdn.net/tastelife/article/detail ...