题解 「BZOJ2137」submultiple
题目大意
给出 \(M,k\) ,求出
\]
给出 \(P_i\),满足 \(n=\prod_{i=1}^{n}a_i^{P_i}\),其中 \(a_i\) 是第 \(i\) 个质数。
对于 \(45\%\) 的数据点满足 \(k\le 10^5\),对于其余数据点满足 \(k\le 12\) 。
思路
首先你发现答案就是:
\]
(因为约数个数是个积性函数)
然后你发现对于 \(45\%\) 的数据点可以直接暴力,然后另外一部分可以直接拉格朗日插值法解决。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 1000000007
#define int long long
#define MAXN 100005
int n,k,P,pre[MAXN];
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = a * a % mod) if (b & 1) res = res * a % mod;
return res;
}
int inv (int x){return qkpow (x,mod - 2);}
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int Sum (int x){//计算\sum_{i=1}^{x}i^k
if (x <= k + 1) return pre[x];
int ans = 0;
for (Int i = 0;i <= k + 1;++ i){
int mot = 1,son = 1;
for (Int j = 0;j <= k + 1;++ j)
if (i != j) mot = mot * (i + mod - j) % mod,son = son * (x + mod - j) % mod;
ans = (ans + pre[i] * son % mod * inv (mot) % mod) % mod;
ans = (ans % mod + mod) % mod;
}
return ans;
}
signed main(){
read (n,k),k %= (mod - 1);
if (k <= 12){//使用拉格朗日插值
pre[0] = qkpow (0,k);
for (Int i = 1;i <= k + 1;++ i) pre[i] = (pre[i - 1] + qkpow (i,k)) % mod;
int res = 1;for (Int i = 1;i <= n;++ i) read (P),P %= mod,res = res * Sum (P + 1) % mod;
write (res),putchar ('\n');
return 0;
}
int ans = 1;
pre[0] = qkpow (0,k);for (Int i = 1;i <= MAXN - 4;++ i) pre[i] = (pre[i - 1] + qkpow (i,k)) % mod;
for (Int i = 1;i <= n;++ i) read (P),P %= mod,ans = 1ll * ans * pre[P + 1] % mod;
write (ans),putchar ('\n');
return 0;
}
题解 「BZOJ2137」submultiple的更多相关文章
- 题解 「HDU6403」卡片游戏
link Description 桌面上摊开着一些卡牌,这是她平时很爱玩的一个游戏.如今卡牌还在,她却不在我身边.不知不觉,我翻开了卡牌,回忆起了当时一起玩卡牌的那段时间. 每张卡牌的正面与反面都各有 ...
- 题解 「SCOI2016」萌萌哒
link Description 一个长度为 $ n $ 的大数,用 $ S_1S_2S_3 \ldots S_n $表示,其中 $ S_i $ 表示数的第 $ i $ 位,$ S_1 $ 是数的最高 ...
- 题解 「SDOI2017」硬币游戏
题目传送门 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利. 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了. 同学们觉得要加强 ...
- 题解 「ZJOI2018」历史
题目传送门 Description 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 \(n\) 个城市,这 \(n\) 个城市被恰 ...
- 题解 「BZOJ3636」教义问答手册
题目传送门 Description 作为泉岭精神的缔造者.信奉者.捍卫者.传承者,Pear决定印制一些教义问答手册,以满足泉岭精神日益增多的信徒.Pear收集了一些有关的诗选.语录,其中部分内容摘录在 ...
- 题解「BZOJ4310」跳蚤
题目传送门 Description 现在有一个长度为 \(n\) 的字符串,将其划分为 \(k\) 段,使得这 \(k\) 段每一段的字典序最大子串中字典序最大的字符串字典序尽量小.求出这个字符串. ...
- 题解 「BZOJ2178」圆的面积并
题目传送门 题目大意 给出 \(n\) 个圆,求它们并的面积大小. \(n\le 10^3\) 思路 如果您不会自适应辛普森法,请戳这里学习 其实我们发现,如果我们设 \(f(x)\) 表示 \(x= ...
- 题解 - 「MLOI」小兔叽
小兔叽 \(\texttt{Link}\) 简单题意 有 \(n\) 个小木桩排成一行,第 \(i\) 个小木桩的高度为 \(h_i\),分数为 \(c_i\). 如果一只小兔叽在第 \(i\) 个小 ...
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
随机推荐
- Vue.JS快速上手(Vue-router 实现SPA 开发)
一.什么是路由 URL -> 映射 -> 组件 Hash+onhashchange History.pushstate+replaceState+onpopstate 二.准备工作 组件 ...
- Scan error on column index 1, name “created_at“: unsupported Scan, storing driver.Value type []uint8
使用gorm,出现以下报错 在连接数据库时加上: parseTime=True db, err = gorm.Open(utils.Db, fmt.Sprintf("%s:%s@(%s:%s ...
- 小程序跨页面传递data数据的三种方法
Q:小程序怎么把页面data里的数据传到另外的页面? 或者小程序怎么吧表单里的数据传到另外的页面?A:1.可以使用url传递数据. 例如在A页面中传递数据,需要注意的是,wx.switchTab中的u ...
- minicom-linux下USB转串口配置
现在的笔记本越做越薄,好些电脑已经没有串口了,做硬件开发会非常头疼,不过有了USB转串口设备,PC机只需要有USB接口就可以了.在linux下我们使用minicom与目标设备通信,在此记录一下linu ...
- php ltrim() rtrim() trim()删除字符空格
php$str=" 去除前后空格 ";echo "方括号中为原始字符串:[".$str."]";echo "原始字符串长度:&qu ...
- MySQL高可用主从复制新增slave
原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 基础环境 二 新增slave2方案 2.1 方案1:-复制主库 2.2 方案2 ...
- Element UI:DatePicker的终止日期与起始日期关联
Template // 起始日期 <el-date-picker v-model="queryParams.startTime" :picker-options=" ...
- Vue中使用 iview 之-踩坑日记
导航列表: 一.iview单选框Select验证问题 二.iview表单v-if引起的问题 三.Upload 手动上传组件 使用是出现的问题 四.Tabs嵌套使用时的问题 五.Tooltip 换行问题 ...
- 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题
1 前言 拉格朗日乘子法(Lagrange Multiplier) 和 KKT(Karush-Kuhn-Tucker) 条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...
- qsc oj-17 喵哈哈村的排队
http://qscoj.cn/problem/17/ 喵哈哈村的排队 描述 有一堆喵哈哈村的村民们在排队,他们从队列的尾部开始标号,标号为1的村民站在最后面,标号为n的村民站在队列的最前面,而且每个 ...