题解 「BZOJ2137」submultiple
题目大意
给出 \(M,k\) ,求出
\]
给出 \(P_i\),满足 \(n=\prod_{i=1}^{n}a_i^{P_i}\),其中 \(a_i\) 是第 \(i\) 个质数。
对于 \(45\%\) 的数据点满足 \(k\le 10^5\),对于其余数据点满足 \(k\le 12\) 。
思路
首先你发现答案就是:
\]
(因为约数个数是个积性函数)
然后你发现对于 \(45\%\) 的数据点可以直接暴力,然后另外一部分可以直接拉格朗日插值法解决。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 1000000007
#define int long long
#define MAXN 100005
int n,k,P,pre[MAXN];
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = a * a % mod) if (b & 1) res = res * a % mod;
return res;
}
int inv (int x){return qkpow (x,mod - 2);}
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int Sum (int x){//计算\sum_{i=1}^{x}i^k
if (x <= k + 1) return pre[x];
int ans = 0;
for (Int i = 0;i <= k + 1;++ i){
int mot = 1,son = 1;
for (Int j = 0;j <= k + 1;++ j)
if (i != j) mot = mot * (i + mod - j) % mod,son = son * (x + mod - j) % mod;
ans = (ans + pre[i] * son % mod * inv (mot) % mod) % mod;
ans = (ans % mod + mod) % mod;
}
return ans;
}
signed main(){
read (n,k),k %= (mod - 1);
if (k <= 12){//使用拉格朗日插值
pre[0] = qkpow (0,k);
for (Int i = 1;i <= k + 1;++ i) pre[i] = (pre[i - 1] + qkpow (i,k)) % mod;
int res = 1;for (Int i = 1;i <= n;++ i) read (P),P %= mod,res = res * Sum (P + 1) % mod;
write (res),putchar ('\n');
return 0;
}
int ans = 1;
pre[0] = qkpow (0,k);for (Int i = 1;i <= MAXN - 4;++ i) pre[i] = (pre[i - 1] + qkpow (i,k)) % mod;
for (Int i = 1;i <= n;++ i) read (P),P %= mod,ans = 1ll * ans * pre[P + 1] % mod;
write (ans),putchar ('\n');
return 0;
}
题解 「BZOJ2137」submultiple的更多相关文章
- 题解 「HDU6403」卡片游戏
link Description 桌面上摊开着一些卡牌,这是她平时很爱玩的一个游戏.如今卡牌还在,她却不在我身边.不知不觉,我翻开了卡牌,回忆起了当时一起玩卡牌的那段时间. 每张卡牌的正面与反面都各有 ...
- 题解 「SCOI2016」萌萌哒
link Description 一个长度为 $ n $ 的大数,用 $ S_1S_2S_3 \ldots S_n $表示,其中 $ S_i $ 表示数的第 $ i $ 位,$ S_1 $ 是数的最高 ...
- 题解 「SDOI2017」硬币游戏
题目传送门 Description 周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利. 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了. 同学们觉得要加强 ...
- 题解 「ZJOI2018」历史
题目传送门 Description 九条可怜是一个热爱阅读的女孩子. 这段时间,她看了一本非常有趣的小说,这本小说的架空世界引起了她的兴趣. 这个世界有 \(n\) 个城市,这 \(n\) 个城市被恰 ...
- 题解 「BZOJ3636」教义问答手册
题目传送门 Description 作为泉岭精神的缔造者.信奉者.捍卫者.传承者,Pear决定印制一些教义问答手册,以满足泉岭精神日益增多的信徒.Pear收集了一些有关的诗选.语录,其中部分内容摘录在 ...
- 题解「BZOJ4310」跳蚤
题目传送门 Description 现在有一个长度为 \(n\) 的字符串,将其划分为 \(k\) 段,使得这 \(k\) 段每一段的字典序最大子串中字典序最大的字符串字典序尽量小.求出这个字符串. ...
- 题解 「BZOJ2178」圆的面积并
题目传送门 题目大意 给出 \(n\) 个圆,求它们并的面积大小. \(n\le 10^3\) 思路 如果您不会自适应辛普森法,请戳这里学习 其实我们发现,如果我们设 \(f(x)\) 表示 \(x= ...
- 题解 - 「MLOI」小兔叽
小兔叽 \(\texttt{Link}\) 简单题意 有 \(n\) 个小木桩排成一行,第 \(i\) 个小木桩的高度为 \(h_i\),分数为 \(c_i\). 如果一只小兔叽在第 \(i\) 个小 ...
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
随机推荐
- rabbitMq可靠消息投递之交换机备份
//备份队列 @Bean("alternate_queue") public Queue alternate_queue() { return new Queue("al ...
- jq的常用事件及其案例
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- ES6基础之let、const
es6的块级作用域通俗的讲就是一对花括号中的区域(声明对象的花括号不是块级作用域),块级作用域可以嵌套. let: 1.le声明的变量只在当前(块级)作用域内有效. 2.let声明的变量不能被重复声明 ...
- 从零开始实现简单 RPC 框架 7:网络通信之自定义协议(粘包拆包、编解码)
当 RPC 框架使用 Netty 通信时,实际上是将数据转化成 ByteBuf 的方式进行传输. 那如何转化呢?可不可以把 请求参数 或者 响应结果 直接无脑序列化成 byte 数组发出去? 答:直接 ...
- NCNN优化实时面部关键点检测
效果图 演示手机为红米10X pro,可以实时跑人脸检测+关键点识别二个模型. 主要优化 上次看见有人讨论人脸检测与关键点识别,用的是opencv相关,于是想看下深度神经网络相关部分的进展,先选定了推 ...
- Java调用腾讯云短信接口,完成验证码的发送(不成功你来砍我!!)
一.前言 我们在一些网站注册页面,经常会见到手机验证码的存在,这些验证码一般的小公司都是去买一些大的厂家的短信服务,自己开发对小公司的成本花费太大了!今天小编就带着大家来学习一下腾讯云的短信接口,体验 ...
- element后端管理布局
<template> <el-container> <el-header> <Header></Header> <span class ...
- FastAPI(2)- 快速入门
安装 FastAPI pip install fastapi # 将来需要将应用程序部署到生产环境可以安装 uvicorn 作为服务器 pip install uvicorn 最简单的代码栗子 fro ...
- 集合Collection ----Set集合
set系列集合:添加的元素是 无序,不重复,无索引的 ----HashSet: 无序,不重复,无索引 ------LinkHashSet<>:有序不重复无索引(添加顺序) ----Tree ...
- 我下载了python所有包,用以备份,有需要的自提
1.背景 我最近准备把1985年-2019年的全国30m分辨率土地利用数据按照地级市进行裁剪与归纳,这需要用到Geopandas对shp数据进行批量操作.在安装Geopandas的python包时,遇 ...