NOIP 模拟 $38\; \rm b$
题解 \(by\;zj\varphi\)
考虑转化问题,将计算最大公约数换为枚举最大公约数。
设 \(sum_i\) 为最大公约数为 \(i\) 的方案数,可以容斥求解,\(sum_i=f_i-\sum_{j=2}^{j*i\le mx} sum_{j*i}\)。
\(f_i\) 表示最大公约数是 \(i\) 的倍数的方案数,设 \(g_{i,j}\) 为第 \(i\) 行,倍数为 \(j\) 的有几个。
最后记得算不选的情况,还要加去一个没选的情况。
Code
#include<bits/stdc++.h>
#define Re register
#define ri Re signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
Re bool f=0;x=0;Re char ch=gc();
while(!isdigit(ch)) f|=ch=='-',ch=gc();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x, T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x, T y) {return x>y?y:x;}
typedef long long ll;
static const int M=1e5+7,N=22,MOD=1e9+7;
int cnt[N][M],ct[N][M],sum[M],mx,n,m,ans;
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n >> m;
for (ri i(1);i<=n;p(i))
for (ri j(1),a;j<=m;p(j)) {
cin >> a;
++ct[i][a];
mx=cmax(mx,a);
}
for (ri i(1);i<=n;p(i))
for (ri j(1);j<=mx;p(j))
for (ri k(1);k*j<=mx;p(k))
cnt[i][j]+=ct[i][k*j];
for (ri i(mx);i;--i) {
sum[i]=1;
for (ri j(1);j<=n;p(j))
sum[i]=(ll)sum[i]*(cnt[j][i]+1)%MOD;
sum[i]=(sum[i]-1+MOD)%MOD;
if (!sum[i]) continue;
for (ri k(2);k*i<=mx;p(k))
sum[i]=(sum[i]-sum[k*i]+MOD)%MOD;
ans=(ans+(ll)sum[i]*i%MOD)%MOD;
}
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $38\; \rm b$的更多相关文章
- NOIP 模拟 $38\; \rm c$
题解 \(by\;zj\varphi\) 发现就是一棵树,但每条边都有多种不同的颜色,其实只需要保留随便三种颜色即可. 直接点分治,将询问离线,分成一端为重心,和两端都不为重心的情况. 每次只关心经过 ...
- NOIP 模拟 $38\; \rm a$
题解 \(by\;zj\varphi\) 压行. 枚举两行,将中间的行压成一行,然后直接前缀和加二分. 注意边界细节问题. Code #include<bits/stdc++.h> #de ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
- 7.22 NOIP模拟7
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 20190725 NOIP模拟8
今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...
- 20190902+0903合集-NOIP模拟
一直没时间写QwQ 于是补一下. Day 1 晚饭吃的有点恶心…… $1s\,2s\,5s$ 还开 -O2 ?? 有点恐怖. T1 猛的一想: 把外面设成一个点, 向入口连一条权为排队时间的边 从出口 ...
- 5.23考试总结(NOIP模拟2)
5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[ ...
随机推荐
- 42. Trapping Rain Water [dp][stack]
description: Given n non-negative integers representing an elevation map where the width of each bar ...
- Spring 的循环依赖问题
什么是循环依赖 什么是循环依赖呢?可以把它拆分成循环和依赖两个部分来看,循环是指计算机领域中的循环,执行流程形成闭合回路:依赖就是完成这个动作的前提准备条件,和我们平常说的依赖大体上含义一致.放到 S ...
- Spring Boot(一):如何使用Spring Boot搭建一个Web应用
Spring Boot Spring Boot 是Spring团队旗下的一款Web 应用框架 其优势可以更快速的搭建一个Web应用 从根本上上来讲 Spring Boot并不是什么新的框架技术 而是在 ...
- 两人团队项目-石家庄地铁查询系统(web版)
大二上学期做过只有两号线的地铁查询系统,但是只能在控制台操作.这一次将线路加到了六条,并且要求web实现,下面简述一下设计思路和具体代码实现: 1.数据库建表 于我自己习惯而言,我写javaweb项目 ...
- [刘阳Java]_大型电商网站架构技术演化历程
今年的双十一已经过去一段,作为技术小咖啡,我们先说一下大型电商网站的特点:高并发,大流量,高可用,海量数据.下面就说说大型网站的架构演化过程,它的技术架构是如何一步步的演化的 1. 早期的网站架构 初 ...
- 【剑指offer】58 - II. 左旋转字符串
剑指 Offer 58 - II. 左旋转字符串 知识点:字符串: 题目描述 字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部.请定义一个函数实现字符串左旋转操作的功能.比如,输入字符串 ...
- jquery性能优化建议-上篇
一.注意定义jQuery变量的时候添加var关键字这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:$loading = $('#loading'); / ...
- springMVC-7-数据处理转换
我们为什么要对数据进行处理? 需求:在上个crud中我们如果需要每次修改的时候都要把时间也记录下来 解决:在jsp中新增一个input,在employee中新增一个Data字段 问题:input输出来 ...
- 第一篇 -- 下载并安装IDEA
此篇讲的是安装IDEA企业版,社区版是免费的,就不多说了. 参考链接:https://www.exception.site/essay/how-to-free-use-intellij-idea-20 ...
- synchronized 加锁 this 和 class 的区别!
synchronized 是 Java 语言中处理并发问题的一种常用手段,它也被我们亲切的称之为"Java 内置锁",由此可见其地位之高.然而 synchronized 却有着多种 ...