各种插值法的python实现
一维插值
插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格朗日插值法、分段插值法、样条插值法。
- 拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂。随着样点增加,高次插值会带来误差的震动现象称为龙格现象。
- 分段插值:虽然收敛,但光滑性较差。
- 样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式。由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。
# -*-coding:utf-8 -*-
import numpy as np
from scipy import interpolate
import pylab as pl x=np.linspace(0,10,11)
#x=[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
y=np.sin(x)
xnew=np.linspace(0,10,101)
pl.plot(x,y,"ro") for kind in ["nearest","zero","slinear","quadratic","cubic"]:#插值方式
#"nearest","zero"为阶梯插值
#slinear 线性插值
#"quadratic","cubic" 为2阶、3阶B样条曲线插值
f=interpolate.interp1d(x,y,kind=kind)
# ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpolation of first, second or third order)
ynew=f(xnew)
pl.plot(xnew,ynew,label=str(kind))
pl.legend(loc="lower right")
pl.show()
结果:
二维插值
方法与一维数据插值类似,为二维样条插值。
# -*- coding: utf-8 -*-
"""
演示二维插值。
"""
import numpy as np
from scipy import interpolate
import pylab as pl
import matplotlib as mpl def func(x, y):
return (x+y)*np.exp(-5.0*(x**2 + y**2)) # X-Y轴分为15*15的网格
y,x= np.mgrid[-1:1:15j, -1:1:15j] fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值
print len(fvals[0]) #三次样条二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic') # 计算100*100的网格上的插值
xnew = np.linspace(-1,1,100)#x
ynew = np.linspace(-1,1,100)#y
fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 # 绘图
# 为了更明显地比较插值前后的区别,使用关键字参数interpolation='nearest'
# 关闭imshow()内置的插值运算。
pl.subplot(121)
im1=pl.imshow(fvals, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")#pl.cm.jet
#extent=[-1,1,-1,1]为x,y范围 favals为
pl.colorbar(im1) pl.subplot(122)
im2=pl.imshow(fnew, extent=[-1,1,-1,1], cmap=mpl.cm.hot, interpolation='nearest', origin="lower")
pl.colorbar(im2)
pl.show()
左图为原始数据,右图为二维插值结果图。
二维插值的三维展示方法
# -*- coding: utf-8 -*-
"""
演示二维插值。
"""
# -*- coding: utf-8 -*-
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
from scipy import interpolate
import matplotlib.cm as cm
import matplotlib.pyplot as plt def func(x, y):
return (x+y)*np.exp(-5.0*(x**2 + y**2)) # X-Y轴分为20*20的网格
x = np.linspace(-1, 1, 20)
y = np.linspace(-1,1,20)
x, y = np.meshgrid(x, y)#20*20的网格数据 fvals = func(x,y) # 计算每个网格点上的函数值 15*15的值 fig = plt.figure(figsize=(9, 6))
#Draw sub-graph1
ax=plt.subplot(1, 2, 1,projection = '3d')
surf = ax.plot_surface(x, y, fvals, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('f(x, y)')
plt.colorbar(surf, shrink=0.5, aspect=5)#标注 #二维插值
newfunc = interpolate.interp2d(x, y, fvals, kind='cubic')#newfunc为一个函数 # 计算100*100的网格上的插值
xnew = np.linspace(-1,1,100)#x
ynew = np.linspace(-1,1,100)#y
fnew = newfunc(xnew, ynew)#仅仅是y值 100*100的值 np.shape(fnew) is 100*100
xnew, ynew = np.meshgrid(xnew, ynew)
ax2=plt.subplot(1, 2, 2,projection = '3d')
surf2 = ax2.plot_surface(xnew, ynew, fnew, rstride=2, cstride=2, cmap=cm.coolwarm,linewidth=0.5, antialiased=True)
ax2.set_xlabel('xnew')
ax2.set_ylabel('ynew')
ax2.set_zlabel('fnew(x, y)')
plt.colorbar(surf2, shrink=0.5, aspect=5)#标注 plt.show()
左图的二维数据集的函数值由于样本较少,会显得粗糙。而右图对二维样本数据进行三次样条插值,拟合得到更多数据点的样本值,绘图后图像明显光滑多了。
各种插值法的python实现的更多相关文章
- 牛顿插值法——用Python进行数值计算
拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集, 因此,通过寻找n个插值节点构造的的插值函数与n ...
- 拉格朗日插值法——用Python进行数值计算
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...
- 线性插值法的原理和python代码实现
假设我们已知坐标 (x0, y0) 与 (x1, y1),要得到 [x0, x1] 区间内某一位置 x 在直线上的值.根据图中所示,我们得到 由于 x 值已知,所以可以从公式得到 y 的值 已知 y ...
- 拉格朗日插值法--python
数据插补 常见插补方法 插值法--拉格朗日插值法 根据数学知识可知,对于平面上已知的n个点(无两点在一条直线上可以找到n-1次多项式 ,使次多项式曲线过这n个点. 1)求已知过n个点的n-1次多项式: ...
- Python 练习册
01:将你的 QQ 头像(或者微博头像)右上角加上红色的数字,类似于微信未读信息数量那种提示效果 [图像处理] 类似于图中效果: py 2.7代码: from PIL import Image, Im ...
- Python数据分析之pandas学习
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...
- CPP&MATLAB实现拉格朗日插值法
开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...
- 简单bmp图片处理工具——python实现
预备实现功能: 1.读取bmp文件 2.保存bmp文件 3.对bmp图片进行放大.缩小 4.对bmp图片进行灰度化 5.对bmp图片进行旋转 bmp文件格式非常简单,对于我这种初学者来说减少了不少不必 ...
- python数据分析入门学习笔记
学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分 ...
随机推荐
- koa踩坑记录
1.koa热更新用nodemon 2.koa中暂不支持import/export 3.只发送options请求,没有后续请求 当ctx.set('Access-Control-Allow-Cred ...
- JAVA数组的基础入门>从零开始学java系列
目录 JAVA数组的基础入门 什么是数组,什么情况下使用数组 数组的创建方式 获取数组的数据 数组的内存模型 为什么数组查询修改快,而增删慢? 查询快的原因 增删慢的原因 数组的两种遍历方式以及区别 ...
- kivy八种布局方式学习
kivy八种布局:FloatLayout.BoxLayout.AnchorLayout.GridLayout.PageLayout.RelativeLayout.ScatterLayout.Stack ...
- 【python与机器学习实战】感知机和支持向量机学习笔记(一)
对<Python与机器学习实战>一书阅读的记录,对于一些难以理解的地方查阅了资料辅以理解并补充和记录,重新梳理一下感知机和SVM的算法原理,加深记忆. 1.感知机 感知机的基本概念 感知机 ...
- TCP文件上传实现
TCP文件上传实现 服务端: package net.study; import java.io.*; import java.net.ServerSocket; import java.net.So ...
- 接口自动化测试之httprunner初探
❝ 今天来介绍一个python的一个开源项目:httprunner,接口自动化工具.第一次输入,难免有不周到的地方,轻喷~ ❞ 介绍: HttpRunner是一个简单优雅但功能强大的 HTTP(S) ...
- Spring Boot自动配置原理与实践(二)
前言 在之前的博文(Spring Boot自动配置原理与实践(一))中,已经介绍了Spring boot的自动配置的相关原理与概念,本篇主要是对自动配置的实践,即自定义Starter,对原理与概念加深 ...
- 剑指 Offer 68 - I. 二叉搜索树的最近公共祖先
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q ...
- 数据结构与算法-排序(十)桶排序(Bucket Sort)
摘要 桶排序和基数排序类似,相当于基数排序的另外一种逻辑.它是将取值范围当做创建桶的数量,桶的长度就是序列的大小.通过处理比较元素的数值,把元素放在桶的特定位置,然后遍历桶,就可以得到有序的序列. 逻 ...
- 常用正则表达式最强汇总(含Python代码举例讲解+爬虫实战)
大家好,我是辰哥~ 本文带大家学习正则表达式,并通过python代码举例讲解常用的正则表达式 最后实战爬取小说网页:重点在于爬取的网页通过正则表达式进行解析. 正则表达式语法 Python的re模块( ...