前言:本篇文章依赖四个jar包,其中javacv.jar,javacpp.jar和opencv.jar为固定jar包,opencv-系统环境.jar为选配(根据自己的系统平台,x64还是x86而定)

须知:

OpenCVFrameConverter.ToIplImage可以用于将Frame转换为Mat和IplImage,Mat和IplImage转为Frame

Mat和IplImage之间的转换可以使用opeoCV库中提供的功能

使用方式:

static OpenCVFrameConverter.ToIplImage converter = new OpenCVFrameConverter.ToIplImage();
public static void converter(Frame frame) {

		// 将Frame转为Mat
		Mat mat = converter.convertToMat(frame);

		// 将Mat转为Frame
		Frame convertFrame1 = converter.convert(mat);

		// 将Frame转为IplImage
		IplImage image1 = converter.convertToIplImage(frame);
		IplImage image2 = converter.convert(frame);

		// 将IplImage转为Frame
		Frame convertFrame2 = converter.convert(image1);

		//Mat转IplImage
		IplImage matImage = new IplImage(mat);

		//IplImage转Mat
		Mat mat2 = new Mat(matImage);

	}

测试:

public static void main(String[] args) throws Exception {
		// 抓取取本机摄像头
		OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(0);
		grabber.start();
		//取一帧视频(图像)
		converter(grabber.grab());
		grabber.stop();
	}

源码一览:

/**
 * A utility class to map data between {@link Frame} and {@link IplImage} or {@link Mat}.
 * Since this is an abstract class, one must choose between two concrete classes:
 * {@link ToIplImage} or {@link ToMat}.
 *
 * @author Samuel Audet
 */
public abstract class OpenCVFrameConverter<F> extends FrameConverter<F> {
    IplImage img;
    Mat mat;

    public static class ToIplImage extends OpenCVFrameConverter<IplImage> {
        @Override public Frame convert(IplImage img) { return super.convert(img); }
        @Override public IplImage convert(Frame frame) { return convertToIplImage(frame); }
    }

    public static class ToMat extends OpenCVFrameConverter<Mat> {
        @Override public Frame convert(Mat mat) { return super.convert(mat); }
        @Override public Mat convert(Frame frame) { return convertToMat(frame); }
    }

    public static int getFrameDepth(int depth) {
        switch (depth) {
            case IPL_DEPTH_8U:  case CV_8U:  return Frame.DEPTH_UBYTE;
            case IPL_DEPTH_8S:  case CV_8S:  return Frame.DEPTH_BYTE;
            case IPL_DEPTH_16U: case CV_16U: return Frame.DEPTH_USHORT;
            case IPL_DEPTH_16S: case CV_16S: return Frame.DEPTH_SHORT;
            case IPL_DEPTH_32F: case CV_32F: return Frame.DEPTH_FLOAT;
            case IPL_DEPTH_32S: case CV_32S: return Frame.DEPTH_INT;
            case IPL_DEPTH_64F: case CV_64F: return Frame.DEPTH_DOUBLE;
            default: return -1;
        }
    }

    public static int getIplImageDepth(int depth) {
        switch (depth) {
            case Frame.DEPTH_UBYTE:  return IPL_DEPTH_8U;
            case Frame.DEPTH_BYTE:   return IPL_DEPTH_8S;
            case Frame.DEPTH_USHORT: return IPL_DEPTH_16U;
            case Frame.DEPTH_SHORT:  return IPL_DEPTH_16S;
            case Frame.DEPTH_FLOAT:  return IPL_DEPTH_32F;
            case Frame.DEPTH_INT:    return IPL_DEPTH_32S;
            case Frame.DEPTH_DOUBLE: return IPL_DEPTH_64F;
            default:  return -1;
        }
    }
    static boolean isEqual(Frame frame, IplImage img) {
        return img != null && frame != null && frame.image != null && frame.image.length > 0
                && frame.imageWidth == img.width() && frame.imageHeight == img.height()
                && frame.imageChannels == img.nChannels() && getIplImageDepth(frame.imageDepth) == img.depth()
                && new Pointer(frame.image[0]).address() == img.imageData().address()
                && frame.imageStride * Math.abs(frame.imageDepth) / 8 == img.widthStep();
    }
    public IplImage convertToIplImage(Frame frame) {
        if (frame == null || frame.image == null) {
            return null;
        } else if (frame.opaque instanceof IplImage) {
            return (IplImage)frame.opaque;
        } else if (!isEqual(frame, img)) {
            int depth = getIplImageDepth(frame.imageDepth);
            img = depth < 0 ? null : IplImage.createHeader(frame.imageWidth, frame.imageHeight, depth, frame.imageChannels)
                    .imageData(new BytePointer(new Pointer(frame.image[0].position(0))))
                    .widthStep(frame.imageStride * Math.abs(frame.imageDepth) / 8)
                    .imageSize(frame.image[0].capacity() * Math.abs(frame.imageDepth) / 8);
        }
        return img;
    }
    public Frame convert(IplImage img) {
        if (img == null) {
            return null;
        } else if (!isEqual(frame, img)) {
            frame = new Frame();
            frame.imageWidth = img.width();
            frame.imageHeight = img.height();
            frame.imageDepth = getFrameDepth(img.depth());
            frame.imageChannels = img.nChannels();
            frame.imageStride = img.widthStep() * 8 / Math.abs(frame.imageDepth);
            frame.image = new Buffer[] { img.createBuffer() };
            frame.opaque = img;
        }
        return frame;
    }

    public static int getMatDepth(int depth) {
        switch (depth) {
            case Frame.DEPTH_UBYTE:  return CV_8U;
            case Frame.DEPTH_BYTE:   return CV_8S;
            case Frame.DEPTH_USHORT: return CV_16U;
            case Frame.DEPTH_SHORT:  return CV_16S;
            case Frame.DEPTH_FLOAT:  return CV_32F;
            case Frame.DEPTH_INT:    return CV_32S;
            case Frame.DEPTH_DOUBLE: return CV_64F;
            default:  return -1;
        }
    }
    static boolean isEqual(Frame frame, Mat mat) {
        return mat != null && frame != null && frame.image != null && frame.image.length > 0
                && frame.imageWidth == mat.cols() && frame.imageHeight == mat.rows()
                && frame.imageChannels == mat.channels() && getMatDepth(frame.imageDepth) == mat.depth()
                && new Pointer(frame.image[0]).address() == mat.data().address()
                && frame.imageStride * Math.abs(frame.imageDepth) / 8 == (int)mat.step();
    }
    public Mat convertToMat(Frame frame) {
        if (frame == null || frame.image == null) {
            return null;
        } else if (frame.opaque instanceof Mat) {
            return (Mat)frame.opaque;
        } else if (!isEqual(frame, mat)) {
            int depth = getMatDepth(frame.imageDepth);
            mat = depth < 0 ? null : new Mat(frame.imageHeight, frame.imageWidth, CV_MAKETYPE(depth, frame.imageChannels),
                    new Pointer(frame.image[0].position(0)), frame.imageStride * Math.abs(frame.imageDepth) / 8);
        }
        return mat;
    }
    public Frame convert(Mat mat) {
        if (mat == null) {
            return null;
        } else if (!isEqual(frame, mat)) {
            frame = new Frame();
            frame.imageWidth = mat.cols();
            frame.imageHeight = mat.rows();
            frame.imageDepth = getFrameDepth(mat.depth());
            frame.imageChannels = mat.channels();
            frame.imageStride = (int)mat.step() * 8 / Math.abs(frame.imageDepth);
            frame.image = new Buffer[] { mat.createBuffer() };
            frame.opaque = mat;
        }
        return frame;
    }
}

javaCV图像处理之Frame、Mat和IplImage三者相互转换(使用openCV进行Mat和IplImage转换)的更多相关文章

  1. opencv中Mat与IplImage,CVMat类型之间转换

    opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型 ...

  2. IplImage, CvMat, Mat 的关系和相互转换(转)

    (看到的一篇非常好的文章,讲opencv内部类之间的关系的.) opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重 ...

  3. opencv基础知识------IplImage, CvMat, Mat 的关系和相互转换

    Mat,cvMat和IplImage这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化.而CvMat和IplImage类型更侧重于“图像 ...

  4. OpenCV中Mat的详解

    每次碰到Mat都得反复查具体的用法,网上的基础讲解不多,难得看到一篇,赶快转来收藏~ 原文地址:http://www.opencvchina.com/thread-1039-1-1.html 目标 我 ...

  5. opencv:Mat对象

    Mat对象:图像文件的内存数据对象 读取为 Mat 对象 读取图像位Mat对象,获取图像的相关信息 #include <opencv2/opencv.hpp> #include <i ...

  6. opencv数据结构-MAT结构详解

    1.定义 OpenCV中的C结构体有 CvMat 和 CvMatND,但后续的应用中指出 CvMat 和 CvMatND 弃用了,在C++封装中用 Mat 代替,另外旧版还有一个 IplImage,同 ...

  7. OpenCV(2)-Mat数据结构及访问Mat中像素

    Mat数据结构 一开始OpenCV是基于C语言的,在比较早的教材例如<学习OpenCV>中,讲解的存储图像的数据结构还是IplImage,这样需要手动管理内存.现在存储图像的基本数据结构是 ...

  8. OpenCV中Mat总结

    一.数字图像存储概述 数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵. 二.Mat的存储 1.OpenCV1基于C接口定义的图像存储格式IplImage*,直接暴露内存,如果忘 ...

  9. OpenCV中Mat的使用

    一.数字图像存储概述 数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵. 二.Mat的存储 1.OpenCV1基于C接口定义的图像存储格式IplImage*,直接暴露内存,如果忘 ...

随机推荐

  1. 一个例子简要说明include和require的区别

    先编辑command.php文件 echo 'hello'.PHP_EOL; 然后编辑console.php文件 for($i=1;$i<=3;++$i){ require 'command1. ...

  2. 忘记了root密码,如何进入系统?

    Issue 问题 忘记了root密码不能进入系统 如何进入系统? 环境 红帽企业版Linux所有版本 解决方法 可以进入单用户模式或者援救模式来改变root密码,如何进入单用户模式取决引导加载程序. ...

  3. 完全背包hdu1114

    https://vjudge.net/contest/68966#problem/F 初始化就行了:dp[0]=0: 这题还要刚好装满背包,输出时进行判断 #include<map> #i ...

  4. spring、spring mvc、mybatis框架整合基本知识

    学习了一个多月的框架知识了,这两天很想将它整合一下.网上看了很多整合案例,基本都是基于Eclipse的,但现在外面公司基本都在用Intellij IDEA了,所以结合所学知识,自己做了个总结,有不足之 ...

  5. windows下编译java源文件的编码错误

    import java.util.Arrays;public class ArrayAsAReference{ public static void main(String[] args) { int ...

  6. 从点击到呈现 — 详解一次HTTP请求

    一般来说,很多的参考资料上面都会说,http 是一个基于请求/响应的工作模式,然后画出一张浏览器和服务器的 b/s 结构图,再画上两个箭头,表示请求和响应,应该说这么解释是易懂的,一般也是够清楚的,但 ...

  7. LINQ基础(一)

    LINQ(Language Integrated Query,语言集成查询),在C#语言中集成了查询语法,可以用相同的语法访问不同的数据源. LINQ提供了不同数据源的抽象层,所以可以使用相同的语法. ...

  8. 常用oralce_sql

    1.解锁账户: 默认的scott用户是被锁定的,先解锁就能登陆上了. 使用下面的语句解锁scott: alter user scott account unlock; 解锁之后可能会要求你该密码: a ...

  9. bitnami gitlab 配置域名

    正常安装完成以后gitlab的代码仓库域名的地址依然是IP,这样不便于我们记忆,所以我想给gitlab增加一个域名 找到gitlab.yml 配置文件,在gitlab 节点下的host 由IP变更为域 ...

  10. Fast Fourier Transform ——快速傅里叶变换

    问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$ ...