首先我们先说下图论,一般图存储可以使用邻接矩阵,或邻接表,一般使用邻接矩阵在稠密图比较省空间。

我们来说下有向图,一般的有向图也是图,图可以分为稠密图,稀疏图,那么从意思上,稠密图就是点的边比较多,稀疏图就是边比较少的图。为什么稠密图放在矩阵比较省空间,因为邻接表在边之间存储需要多余的指针,而矩阵不需要。

下面这张图:http://blog.csdn.net/tham_/article/details/46048063

我们只说有向图,我们把有向图存在矩阵

我们先说Warshall,假如我们有一张图

我们把这张图存储在矩阵

首先是a,a可以直接到b,那么ab就是1

接着就是b,b可以直接到c,那么bc就是1

Warshall a b c d e
a 0 1 0 0 0
b 0 0 1 0 0
c 0 0 0 1 0
d 1 0 0 0 1
e 0 0 0 0 0

那么Warshall怎么做,他需要做个十字形,因为有个定理,

其中ijk都是从0到n,这里n是点个数

那么我们得到的第一个矩阵,叫做

那么由第一个矩阵变化出第二个矩阵就叫

然后一直到n,这里n是点个数

如何变化,其实很简单,做个十字,这里说的十字是

那么我们第一个公式就可以来

我们选择一个点

如果在十字两个都是1,那么这个点也就改为1,因为图里只有一个点可以修改,所以修改完就是

接着我们把十字修改

那么发现有两个点,加粗db是上次修改的

我们可以发现ac和dc都是可以修改

那么继续修改

修改后

Warshall a b c d e
a 1 1 1 1 1
b 1 1 1 1 1
c 1 1 1 1 1
d 1 1 1 1 1
e 0 0 0 0 0

因为我们从a到d都是可以到达,所以都为1,因为存在d可以到e,所以所有点都可以到e,因为e本身没有到任何点,所以为0

那么Floyd是什么,其实就是把原先的矩阵1改为数字

Floyd是可以算图中任意两个点的最短路径

那么说道这,我们需要带权有向图

带权就是两个点之间的边有个权,放在矩阵就是可以相连的两个点之间的ij为权

1

Warshall a b c d e
a 0 5
b
0 2
c
0 1
d 6 15
0 1
e
0

我们和之前Warshall一样做十字,然后判断是得到

那么这样就可以得到任意两点路径

算法复杂

在Warshall是判断两个都为1,修改,Floyd判断两个加起来的值比当前的小,修改

和Warshall一样全部修改就是两个点之间最短距离。

修改如果加上一个数还是

任意一个数字小于

所以只要存在数字就可以修改

图论 Warshall 和Floyd 矩阵传递闭包的更多相关文章

  1. poj 3613 经过k条边最短路 floyd+矩阵快速幂

    http://poj.org/problem?id=3613 s->t上经过k条边的最短路 先把1000范围的点离散化到200中,然后使用最短路可以使用floyd,由于求的是经过k条路的最短路, ...

  2. UVa(247),Floyd做传递闭包

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  3. UVA - 247 Calling Circles(Floyd求传递闭包)

    题目: 思路: 利用Floyd求传递闭包(mp[i][j] = mp[i][j]||(mp[i][k]&&mp[k][j]);),当mp[i][j]=1&&mp[j][ ...

  4. 【floyd+矩阵乘法】POJ 3613 Cow Relays

    Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a rel ...

  5. POJ 3660 Cow Contest(Floyd求传递闭包(可达矩阵))

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16341   Accepted: 9146 Desc ...

  6. 图论学习笔记·$Floyd$ $Warshall$

    对于图论--虽然本蒟蒻也才入门--于是有了这篇学习笔记\(qwq\) 一般我们对于最短路的处理,本蒟蒻之前都是通过构建二维数组的方式然后对每两个点进行1次深度或者广度优先搜索,即一共进行\(n\)^2 ...

  7. POJ 3275 Ranking the cows ( Floyd求解传递闭包 && Bitset优化 )

    题意 : 给出 N 头牛,以及 M 个某些牛之间的大小关系,问你最少还要确定多少对牛的关系才能将所有的牛按照一定顺序排序起来 分析 : 这些给出的关系想一下就知道是满足传递性的 例如 A > B ...

  8. 图论之最短路径floyd算法

    Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5 ...

  9. poj 1932 XYZZY(spfa最长路+判断正环+floyd求传递闭包)

    XYZZY Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4154   Accepted: 1185 Description ...

随机推荐

  1. 测试与发布(Alpha版本)

    [Alpha阶段]测试报告 1.测试找出的BUG (1).这种情况刷新就好 (2).文件必须10个才行,多余10个的部分不会进入查重的部分,少于会出错: (3).文件保存在d:\files,由于有些原 ...

  2. bean的生命周期以及延迟实例化

    可以指定bean的初始化创建的时候调用的方法,以及销毁的时候调用的方法. 通过指定中的init-method和destroy-method方法指定bean的创建和销毁的时候执行类中的方法. 把lazy ...

  3. 团队作业4——第一次项目冲刺(Alpha版本) Day1

    1.开站立式会议: 2.Leangoo任务分解图: 3.开会讨论的结果,任务分派 队员 今日进展 明日安排 林燕 调查产品的市场需求,学习微信开发 完善逻辑架构框架 王李焕 结合实际分析系统设计思路, ...

  4. 201521123050 《Java程序设计》第13周学习总结

    1. 本周学习总结 2. 书面作业 1. 网络基础 1.1 比较ping www.baidu.com与ping cec.jmu.edu.cn,分析返回结果有何不同?为什么会有这样的不同? 对比可以看出 ...

  5. java课程设计---彩票销售管理系统

    彩票购买销售系统 1.项目git地址 https://git.oschina.net/fenm/lotterry.git 部分项目地址提交截图 项目主要功能图 团队博客链接 http://www.cn ...

  6. Eclipse中删除tomcat server 导致不能重新创建该版本的tomcat server

    在Eclipse中创建了一个Web工程后,需要将该工程部署到Tomcat中进行发布.有时就会遇到在New Server对话框中选择了Tomcat 6/7后却无法单击“Next”按钮的问题,如下图所示: ...

  7. hibernate中Query的list和iterator区别

    1.Test_query_list类 public class Test_query_iterator_list { public static void main(String[] args) { ...

  8. 以下内容对于灵活修改textField中文本以及占位文本属性进行了完整的封装,加入项目中可以节约开发时间。

    textField对占位文本设置属性有限,在项目中需要改变占位文本的属性以及位置,需要自己对控件进行封装 封装方法如下: 在LDTextField.m 文件中: #import <UIKit/U ...

  9. devstack安装openstack newton版本

    准备使用devstack安装openstack N版,搞一套开发环境出来.一连整了4天,遇到各种问题,各种错误,一直到第4天下午4点多才算完成. 在这个过程中感觉到使用devstack搭建openst ...

  10. RG_4

    集训前半段马上就要结束了. 很多作业等待着我. 真希望作业君不喜欢我.