Spark Shuffle模块——Suffle Read过程分析
在阅读本文之前。请先阅读Spark Sort Based Shuffle内存分析
Spark Shuffle Read调用栈例如以下:
1. org.apache.spark.rdd.ShuffledRDD#compute()
2. org.apache.spark.shuffle.ShuffleManager#getReader()
3. org.apache.spark.shuffle.hash.HashShuffleReader#read()
4. org.apache.spark.storage.ShuffleBlockFetcherIterator#initialize()
5. org.apache.spark.storage.ShuffleBlockFetcherIterator#splitLocalRemoteBlocks()
org.apache.spark.storage.ShuffleBlockFetcherIterator#sendRequest()
org.apache.spark.storage.ShuffleBlockFetcherIterator#fetchLocalBlocks()
以下是fetchLocalBlocks()方法运行时涉及到的类和相应方法:
6. org.apache.spark.storage.BlockManager#getBlockData()
org.apache.spark.shuffle.hash.ShuffleManager#shuffleBlockResolver()
ShuffleManager有两个子类。假设是HashShuffle 则相应的是org.apache.spark.shuffle.hash.HashShuffleManager#shuffleBlockResolver()方法,该方法返回的是org.apache.spark.shuffle.FileShuffleBlockResolver。再调用FileShuffleBlockResolver#getBlockData()方法返回Block数据
;假设是Sort Shuffle,则相应的是
org.apache.spark.shuffle.hash.SortShuffleManager#shuffleBlockResolver(),该方法返回的是org.apache.spark.shuffle.IndexShuffleBlockResolver。然后再调用IndexShuffleBlockResolver#getBlockData()返回Block数据。
以下是org.apache.spark.storage.ShuffleBlockFetcherIterator#sendRequest()方法运行时涉及到的类和相应方法
7.
org.apache.spark.network.shuffle.ShuffleClient#fetchBlocks
org.apache.spark.network.shuffle.ShuffleClient有两个子类,各自是ExternalShuffleClient及BlockTransferService
。其中org.apache.spark.network.shuffle.BlockTransferService又有两个子类,各自是NettyBlockTransferService和NioBlockTransferService。相应两种不同远程获取Block数据方式。Spark 1.5.2中已经将NioBlockTransferService方式设置为deprecated。在兴许版本号中将被移除
以下按上述调用栈对各方法进行说明,这里仅仅讲脉络,细节后面再讨论
ShuffledRDD#compute()代码
Task运行时。调用ShuffledRDD的compute方法,其代码例如以下:
//org.apache.spark.rdd.ShuffledRDD#compute()
override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
//通过org.apache.spark.shuffle.ShuffleManager#getReader()方法
//不管是Sort Shuffle 还是 Hash Shuffle。使用的都是
//org.apache.spark.shuffle.hash.HashShuffleReader
SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
.read()
.asInstanceOf[Iterator[(K, C)]]
}
能够看到,其核心逻辑是通过调用ShuffleManager#getReader()方法得到HashShuffleReader对象。然后调用HashShuffleReader#read()方法完毕前一Stage中ShuffleMapTask生成的Shuffle 数据的读取。须要说明的是,不管是Hash Shuffle还是Sort Shuffle。使用的都是HashShuffleReader。
HashShuffleReader#read()
跳到HashShuffleReader#read()方法其中。其源代码例如以下:
/** Read the combined key-values for this reduce task */
override def read(): Iterator[Product2[K, C]] = {
//创建ShuffleBlockFetcherIterator对象,在其构造函数中会调用initialize()方法
//该方法中会运行splitLocalRemoteBlocks(),确定数据的读取策略
//远程数据调用sendRequest()方法读取
//本地数据调用fetchLocalBlocks()方法读取
val blockFetcherItr = new ShuffleBlockFetcherIterator(
context,
blockManager.shuffleClient,
blockManager,
mapOutputTracker.getMapSizesByExecutorId(handle.shuffleId, startPartition),
// Note: we use getSizeAsMb when no suffix is provided for backwards compatibility
SparkEnv.get.conf.getSizeAsMb("spark.reducer.maxSizeInFlight", "48m") * 1024 * 1024)
// Wrap the streams for compression based on configuration
val wrappedStreams = blockFetcherItr.map { case (blockId, inputStream) =>
blockManager.wrapForCompression(blockId, inputStream)
}
val ser = Serializer.getSerializer(dep.serializer)
val serializerInstance = ser.newInstance()
// Create a key/value iterator for each stream
val recordIter = wrappedStreams.flatMap { wrappedStream =>
// Note: the asKeyValueIterator below wraps a key/value iterator inside of a
// NextIterator. The NextIterator makes sure that close() is called on the
// underlying InputStream when all records have been read.
serializerInstance.deserializeStream(wrappedStream).asKeyValueIterator
}
// Update the context task metrics for each record read.
val readMetrics = context.taskMetrics.createShuffleReadMetricsForDependency()
val metricIter = CompletionIterator[(Any, Any), Iterator[(Any, Any)]](
recordIter.map(record => {
readMetrics.incRecordsRead(1)
record
}),
context.taskMetrics().updateShuffleReadMetrics())
// An interruptible iterator must be used here in order to support task cancellation
val interruptibleIter = new InterruptibleIterator[(Any, Any)](context, metricIter)
val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) {
if (dep.mapSideCombine) {
// 读取Map端已经聚合的数据
val combinedKeyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, C)]]
dep.aggregator.get.combineCombinersByKey(combinedKeyValuesIterator, context)
} else {
//读取Reducer端聚合的数据
val keyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, Nothing)]]
dep.aggregator.get.combineValuesByKey(keyValuesIterator, context)
}
} else {
require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!")
interruptibleIter.asInstanceOf[Iterator[Product2[K, C]]]
}
// 对输出结果进行排序
dep.keyOrdering match {
case Some(keyOrd: Ordering[K]) =>
// Create an ExternalSorter to sort the data. Note that if spark.shuffle.spill is disabled,
// the ExternalSorter won't spill to disk.
val sorter = new ExternalSorter[K, C, C](ordering = Some(keyOrd), serializer = Some(ser))
sorter.insertAll(aggregatedIter)
context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled)
context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled)
context.internalMetricsToAccumulators(
InternalAccumulator.PEAK_EXECUTION_MEMORY).add(sorter.peakMemoryUsedBytes)
sorter.iterator
case None =>
aggregatedIter
}
}
ShuffleBlockFetcherIterator#splitLocalRemoteBlocks()
splitLocalRemoteBlocks()方法确定数据的读取策略,localBlocks变量记录在本地机器的BlockID,remoteBlocks变量则用于记录全部在远程机器上的BlockID。
远程数据块被切割成最大为maxSizeInFlight大小的FetchRequests
val remoteRequests = new ArrayBuffer[FetchRequest]
splitLocalRemoteBlocks()方法具有源代码例如以下:
private[this] def splitLocalRemoteBlocks(): ArrayBuffer[FetchRequest] = {
// Make remote requests at most maxBytesInFlight / 5 in length; the reason to keep them
// smaller than maxBytesInFlight is to allow multiple, parallel fetches from up to 5
// nodes, rather than blocking on reading output from one node.
//maxBytesInFlight为每次请求的最大数据量,默认值为48M
//通过SparkEnv.get.conf.getSizeAsMb("spark.reducer.maxSizeInFlight", "48m") * 1024 * 1024)进行设置
val targetRequestSize = math.max(maxBytesInFlight / 5, 1L)
logDebug("maxBytesInFlight: " + maxBytesInFlight + ", targetRequestSize: " + targetRequestSize)
// Split local and remote blocks. Remote blocks are further split into FetchRequests of size
// at most maxBytesInFlight in order to limit the amount of data in flight.
val remoteRequests = new ArrayBuffer[FetchRequest]
// Tracks total number of blocks (including zero sized blocks)
var totalBlocks = 0
for ((address, blockInfos) <- blocksByAddress) {
totalBlocks += blockInfos.size
//要获取的数据在本地
if (address.executorId == blockManager.blockManagerId.executorId) {
// Filter out zero-sized blocks
//记录数据在本地的BlockID
localBlocks ++= blockInfos.filter(_._2 != 0).map(_._1)
numBlocksToFetch += localBlocks.size
} else {
//数据不在本地时
val iterator = blockInfos.iterator
var curRequestSize = 0L
var curBlocks = new ArrayBuffer[(BlockId, Long)]
while (iterator.hasNext) {
val (blockId, size) = iterator.next()
// Skip empty blocks
if (size > 0) {
curBlocks += ((blockId, size))
//记录数据在远程机器上的BlockID
remoteBlocks += blockId
numBlocksToFetch += 1
curRequestSize += size
} else if (size < 0) {
throw new BlockException(blockId, "Negative block size " + size)
}
if (curRequestSize >= targetRequestSize) {
// Add this FetchRequest
remoteRequests += new FetchRequest(address, curBlocks)
curBlocks = new ArrayBuffer[(BlockId, Long)]
logDebug(s"Creating fetch request of $curRequestSize at $address")
curRequestSize = 0
}
}
// Add in the final request
if (curBlocks.nonEmpty) {
remoteRequests += new FetchRequest(address, curBlocks)
}
}
}
logInfo(s"Getting $numBlocksToFetch non-empty blocks out of $totalBlocks blocks")
remoteRequests
}
ShuffleBlockFetcherIterator#fetchLocalBlocks()
fetchLocalBlocks()方法进行本地Block的读取。调用的是BlockManager的getBlockData方法。其源代码例如以下:
private[this] def fetchLocalBlocks() {
val iter = localBlocks.iterator
while (iter.hasNext) {
val blockId = iter.next()
try {
//调用BlockManager的getBlockData方法
val buf = blockManager.getBlockData(blockId)
shuffleMetrics.incLocalBlocksFetched(1)
shuffleMetrics.incLocalBytesRead(buf.size)
buf.retain()
results.put(new SuccessFetchResult(blockId, blockManager.blockManagerId, 0, buf))
} catch {
case e: Exception =>
// If we see an exception, stop immediately.
logError(s"Error occurred while fetching local blocks", e)
results.put(new FailureFetchResult(blockId, blockManager.blockManagerId, e))
return
}
}
}
跳转到BlockManager的getBlockData方法。能够看到其源代码例如以下:
override def getBlockData(blockId: BlockId): ManagedBuffer = {
if (blockId.isShuffle) {
//先调用的是ShuffleManager的shuffleBlockResolver方法。得到ShuffleBlockResolver
//然后再调用其getBlockData方法 shuffleManager.shuffleBlockResolver.getBlockData(blockId.asInstanceOf[ShuffleBlockId])
} else {
val blockBytesOpt = doGetLocal(blockId, asBlockResult = false)
.asInstanceOf[Option[ByteBuffer]]
if (blockBytesOpt.isDefined) {
val buffer = blockBytesOpt.get
new NioManagedBuffer(buffer)
} else {
throw new BlockNotFoundException(blockId.toString)
}
}
}
org.apache.spark.shuffle.hash.ShuffleManager#shuffleBlockResolver()方法获取相应的ShuffleBlockResolver,假设是Hash Shuffle,则
是org.apache.spark.shuffle.FileShuffleBlockResolver,假设是Sort Shuffle则org.apache.spark.shuffle.IndexShuffleBlockResolver。
然后调用相应ShuffleBlockResolver的getBlockData方法,返回相应的FileSegment。
FileShuffleBlockResolver#getBlockData方法源代码例如以下:
override def getBlockData(blockId: ShuffleBlockId): ManagedBuffer = {
//相应Hash Shuffle中的Shuffle Consolidate Files机制生成的文件
if (consolidateShuffleFiles) {
// Search all file groups associated with this shuffle.
val shuffleState = shuffleStates(blockId.shuffleId)
val iter = shuffleState.allFileGroups.iterator
while (iter.hasNext) {
val segmentOpt = iter.next.getFileSegmentFor(blockId.mapId, blockId.reduceId)
if (segmentOpt.isDefined) {
val segment = segmentOpt.get
return new FileSegmentManagedBuffer(
transportConf, segment.file, segment.offset, segment.length)
}
}
throw new IllegalStateException("Failed to find shuffle block: " + blockId)
} else {
//普通的Hash Shuffle机制生成的文件
val file = blockManager.diskBlockManager.getFile(blockId)
new FileSegmentManagedBuffer(transportConf, file, 0, file.length)
}
}
IndexShuffleBlockResolver#getBlockData方法源代码例如以下:
override def getBlockData(blockId: ShuffleBlockId): ManagedBuffer = {
// The block is actually going to be a range of a single map output file for this map, so
// find out the consolidated file, then the offset within that from our index
//使用shuffleId和mapId,获取相应索引文件
val indexFile = getIndexFile(blockId.shuffleId, blockId.mapId)
val in = new DataInputStream(new FileInputStream(indexFile))
try {
//定位到本次Block相应的数据位置
ByteStreams.skipFully(in, blockId.reduceId * 8)
//数据起始位置
val offset = in.readLong()
//数据结束位置
val nextOffset = in.readLong()
//返回FileSegment
new FileSegmentManagedBuffer(
transportConf,
getDataFile(blockId.shuffleId, blockId.mapId),
offset,
nextOffset - offset)
} finally {
in.close()
}
}
ShuffleBlockFetcherIterator#sendRequest()
sendRequest()方法用于从远程机器上获取数据
private[this] def sendRequest(req: FetchRequest) {
logDebug("Sending request for %d blocks (%s) from %s".format(
req.blocks.size, Utils.bytesToString(req.size), req.address.hostPort))
bytesInFlight += req.size
// so we can look up the size of each blockID
val sizeMap = req.blocks.map { case (blockId, size) => (blockId.toString, size) }.toMap
val blockIds = req.blocks.map(_._1.toString)
val address = req.address
//使用ShuffleClient的fetchBlocks方法获取数据
//有两种ShuffleClient。各自是ExternalShuffleClient和BlockTransferService
//默觉得BlockTransferService
shuffleClient.fetchBlocks(address.host, address.port, address.executorId, blockIds.toArray,
new BlockFetchingListener {
override def onBlockFetchSuccess(blockId: String, buf: ManagedBuffer): Unit = {
// Only add the buffer to results queue if the iterator is not zombie,
// i.e. cleanup() has not been called yet.
if (!isZombie) {
// Increment the ref count because we need to pass this to a different thread.
// This needs to be released after use.
buf.retain()
results.put(new SuccessFetchResult(BlockId(blockId), address, sizeMap(blockId), buf))
shuffleMetrics.incRemoteBytesRead(buf.size)
shuffleMetrics.incRemoteBlocksFetched(1)
}
logTrace("Got remote block " + blockId + " after " + Utils.getUsedTimeMs(startTime))
}
override def onBlockFetchFailure(blockId: String, e: Throwable): Unit = {
logError(s"Failed to get block(s) from ${req.address.host}:${req.address.port}", e)
results.put(new FailureFetchResult(BlockId(blockId), address, e))
}
}
)
}
通过上面的代码能够看到,代码使用的是shuffleClient.fetchBlocks进行远程Block数据的获取。org.apache.spark.network.shuffle.ShuffleClient有两个子类,各自是ExternalShuffleClient和BlockTransferService,而org.apache.spark.network.shuffle.BlockTransferService又有两个子类。各自是NettyBlockTransferService和NioBlockTransferService,shuffleClient 对象在 org.apache.spark.storage.BlockManager定义,其源代码例如以下:
// org.apache.spark.storage.BlockManager中定义的shuffleClient
private[spark] val shuffleClient = if (externalShuffleServiceEnabled) {
//使用ExternalShuffleClient获取远程Block数据
val transConf = SparkTransportConf.fromSparkConf(conf, numUsableCores)
new ExternalShuffleClient(transConf, securityManager, securityManager.isAuthenticationEnabled(),
securityManager.isSaslEncryptionEnabled())
} else {
//使用NettyBlockTransferService或NioBlockTransferService获取远程Block数据
blockTransferService
}
代码中的blockTransferService在SparkEnv中被初始化,详细例如以下:
//org.apache.spark.SparkEnv中初始化blockTransferService
val blockTransferService =
conf.get("spark.shuffle.blockTransferService", "netty").toLowerCase match {
case "netty" =>
new NettyBlockTransferService(conf, securityManager, numUsableCores)
case "nio" =>
logWarning("NIO-based block transfer service is deprecated, " +
"and will be removed in Spark 1.6.0.")
new NioBlockTransferService(conf, securityManager)
}
Spark Shuffle模块——Suffle Read过程分析的更多相关文章
- spark shuffle过程分析
spark shuffle流程分析 回到ShuffleMapTask.runTask函数 如今回到ShuffleMapTask.runTask函数中: overridedef runTask(cont ...
- Spark Shuffle实现
Apache Spark探秘:Spark Shuffle实现 http://dongxicheng.org/framework-on-yarn/apache-spark-shuffle-details ...
- Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend
本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...
- Spark Scheduler模块源码分析之DAGScheduler
本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...
- Spark Shuffle原理解析
Spark Shuffle原理解析 一:到底什么是Shuffle? Shuffle中文翻译为“洗牌”,需要Shuffle的关键性原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算. 二: ...
- Spark Shuffle的技术演进
在Spark或Hadoop MapReduce的分布式计算框架中,数据被按照key分成一块一块的分区,打散分布在集群中各个节点的物理存储或内存空间中,每个计算任务一次处理一个分区,但map端和re ...
- Spark Shuffle大揭秘
什么是Shuffle: Shuffle中文翻译为“洗牌”,需要Shuffle的关键原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算. Shuffle面临的问题: 1. 数据量非常大: ...
- Spark(五十二):Spark Scheduler模块之DAGScheduler流程
导入 从一个Job运行过程中来看DAGScheduler是运行在Driver端的,其工作流程如下图: 图中涉及到的词汇概念: 1. RDD——Resillient Distributed Datase ...
- Spark Deploy 模块
Spark Scheduler 模块的文章中,介绍到 Spark 将底层的资源管理和上层的任务调度分离开来,一般而言,底层的资源管理会使用第三方的平台,如 YARN 和 Mesos.为了方便用户测试和 ...
随机推荐
- 玩转 HTML5 下 WebGL 的 3D 模型交并补
建设性的立体几何具有许多实际用途,它用于需要简单几何对象的情况下,或者数学精度很重要的地方,几乎所有的工程 CAD 软件包都使用 CSG(可以用于表示刀具切削,以及零件必须配合在一起的特征).CSG ...
- Nginx实现负载均衡&Nginx缓存功能
一.Nginx是什么 Nginx (engine x) 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器.Nginx是由伊戈尔·赛索耶夫为俄罗斯访问量第二的Rambl ...
- 通过jettymain启动项目
jetty是一个比tomcat轻量级好多的服务器,通过简单的配置即可成功的跑起来,编译过程要短一点,可以一定程度上提高开发效率 首先,要下载下来jetty的包,mvn信息如下: <depende ...
- ssm框架下web项目,web.xml配置文件的作用
1. web.xml中配置了CharacterEncodingFilter,配置这个是拦截所有的资源并设置好编号格式. encoding设置成utf-8就相当于request.setCharacter ...
- java_IO流读取本地文件
package com.ht.util; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoun ...
- Kaggle实战之一回归问题
0. 前言 1.任务描述 2.数据概览 3. 数据准备 4. 模型训练 5. kaggle实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题 ...
- 隐藏17年的Office远程代码执行漏洞(CVE-2017-11882)
Preface 这几天关于Office的一个远程代码执行漏洞很流行,昨天也有朋友发了相关信息,于是想复现一下看看,复现过程也比较简单,主要是简单记录下. 利用脚本Github传送地址 ,后面的参考链接 ...
- 获取request header的值
1Sring mvc 中可以通过注解 : @RequestHeader ("host") String hostName 2httpservletrequest request ...
- 一篇不错的Gibbs Sampling解释文章,通俗易懂
http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 直接原文的链接了.原文写的不错,是中文博客中说的比较明白的了. 但为了保留文章,随 ...
- unity android相互调用
简介 有一些手机功能,Unity没有提供相应的接口,例如震动,例如不锁屏,例如GPS,例如... 有太多的特殊功能Unity都没有提供接口,这时候,我们就需要通过使用Android原生的ADT编辑器去 ...