Uncle Tom's Inherited Land*

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 203 Accepted Submission(s): 132
 
Problem Description
Your old uncle Tom inherited a piece of land from his great-great-uncle. Originally, the property had been in the shape of a rectangle. A long time ago, however, his great-great-uncle decided to divide the land into a grid of small squares. He turned some of the squares into ponds, for he loved to hunt ducks and wanted to attract them to his property. (You cannot be sure, for you have not been to the place, but he may have made so many ponds that the land may now consist of several disconnected islands.)

Your uncle Tom wants to sell the inherited land, but local rules now regulate property sales. Your uncle has been informed that, at his great-great-uncle's request, a law has been passed which establishes that property can only be sold in rectangular lots the size of two squares of your uncle's property. Furthermore, ponds are not salable property.

Your uncle asked your help to determine the largest number of properties he could sell (the remaining squares will become recreational parks).

 
Input
Input will include several test cases. The first line of a test case contains two integers N and M, representing, respectively, the number of rows and columns of the land (1 <= N, M <= 100). The second line will contain an integer K indicating the number of squares that have been turned into ponds ( (N x M) - K <= 50). Each of the next K lines contains two integers X and Y describing the position of a square which was turned into a pond (1 <= X <= N and 1 <= Y <= M). The end of input is indicated by N = M = 0.
 
Output
            For each test case in the input your program should first output one line, containing an integer p representing the maximum number of properties which can be sold. The next p lines specify each pair of squares which can be sold simultaneity. If there are more than one solution, anyone is acceptable. there is a blank line after each test case. See sample below for clarification of the output format.
 
Sample Input
4 4
6
1 1
1 4
2 2
4 1
4 2
4 4
4 3
4
4 2
3 2
2 2
3 1
0 0
 
Sample Output
4
(1,2)--(1,3)
(2,1)--(3,1)
(2,3)--(3,3)
(2,4)--(3,4) 3
(1,1)--(2,1)
(1,2)--(1,3)
(2,3)--(3,3)
 
 
Source
South America 2002 - Practice
 
Recommend
LL
 
/*
题意:给你一个n*m的方格矩阵,然后有k个方格内有鱼塘,给出你k个鱼塘的坐标,剩下的方格用1*2的小方格填满,问你最多能填多少个 初步思路:对剩下的小方格进行二分匹配,只有两个相邻的小方格才存在联系,能填满的最大数,就是二分的最大匹配数;
#超内存 因为开标记数组的时候把鱼塘也考虑进去了,所以开了一个10000*10000的数组,太大 改进:总共空格子最多有50个,只需要开一个50*50的数组就可以
*/
#include<bits/stdc++.h>
#define N 110
using namespace std;
int mapn[N][N];
int vis[N][N];
int vis2[N][N];
int n,m,k;
int x,y;
int dir[][]={{,},{-,},{,-},{,}};
struct node{
int x,y;
node(){}
node(int a,int b){
x=a;
y=b;
}
};
vector<node>point;
/***********************二分匹配模板**************************/
const int MAXN=;
int uN,vN; //u,v数目
int g[][];//编号是0~n-1的
int linker[MAXN];//记录匹配点i的匹配点是谁
bool used[MAXN];
bool dfs(int u)//回溯看能不能通过分手来进行匹配
{
int v;
for(v=;v<point.size();v++)
if(g[u][v]&&!used[v])
//如果有这条边,并且这条边没有用过
{
used[v]=true;
if(linker[v]==-||dfs(linker[v]))//如果这个点没有匹配过,并且能找到匹配点,那么就可以以这个边作为匹配点
{
linker[v]=u;
return true;
}
}
return false;
}
int hungary()//返回最大匹配数
{
int res=;
int u;
memset(linker,-,sizeof(linker));
for(u=;u<point.size();u++)
{
memset(used,,sizeof(used));
if(dfs(u))//如果这个点有匹配点
res++;
}
return res;
}
/***********************二分匹配模板**************************/
void init(){
memset(g,,sizeof g);
memset(mapn,,sizeof mapn);
memset(vis,,sizeof vis);
memset(vis2,,sizeof vis2);
point.clear();
}
bool ok(int x,int y){
if(x<||x>n||y<||y>m||mapn[x][y]) return true;
return false;
}
void match(){//将所有的小方格进行编号 for(int i=;i<=n;i++){//将所有的空方格存进vector中
for(int j=;j<=m;j++){
//cout<<mapn[i][j]<<" ";
if(mapn[i][j]==)
{
point.push_back(node(i,j));
vis2[i][j]=point.size()-;//记录这是第几个
//cout<<i<<" "<<j<<endl;
}
}
//cout<<endl;
}
//cout<<"point.size()="<<point.size()<<endl;
for(int i=;i<point.size();i++){
if(vis[point[i].x][point[i].y]==){
vis[point[i].x][point[i].y]=;
for(int k=;k<;k++){
int fx=point[i].x+dir[k][];
int fy=point[i].y+dir[k][];
if(ok(fx,fy)) continue;
g[i][vis2[fx][fy]]=;
vis[fx][fy]=;
}
}
}
// for(int i=0;i<point.size();i++){
// for(int j=0;j<point.size();j++){
// cout<<g[i][j]<<" ";
// }
// cout<<endl;
// }
}
int main(){
//freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
init();//初始化
scanf("%d",&k);
while(k--){
scanf("%d%d",&x,&y);
mapn[x][y]=;
}//标记鱼塘的位置
// for(int i=1;i<=n;i++){
// for(int j=1;j<=m;j++){
// cout<<mapn[i][j]<<" ";
// }
// cout<<endl;
// }
match();//进行空格的匹配
int cur=hungary();
printf("%d\n",cur);
for(int i=;i<point.size();i++){
if(linker[i]!=-){
printf("(%d,%d)--(%d,%d)\n",point[i].x,point[i].y,point[linker[i]].x,point[linker[i]].y);
}
}
printf("\n");
}
return ;
}

Uncle Tom's Inherited Land*的更多相关文章

  1. hdu-----(1507)Uncle Tom's Inherited Land*(二分匹配)

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  2. HDU 1507 Uncle Tom's Inherited Land*(二分图匹配)

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  3. Hdu 1507 Uncle Tom's Inherited Land* 分类: Brush Mode 2014-07-30 09:28 112人阅读 评论(0) 收藏

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  4. HDU 1507 Uncle Tom's Inherited Land*(二分匹配,输出任意一组解)

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  5. XTU 二分图和网络流 练习题 B. Uncle Tom's Inherited Land*

    B. Uncle Tom's Inherited Land* Time Limit: 1000ms Memory Limit: 32768KB 64-bit integer IO format: %I ...

  6. HDU——T 1507 Uncle Tom's Inherited Land*

    http://acm.hdu.edu.cn/showproblem.php?pid=1507 Time Limit: 2000/1000 MS (Java/Others)    Memory Limi ...

  7. ZOJ1516 Uncle Tom's Inherited Land(二分图最大匹配)

    一个经典的构图:对格子进行黑白染色,黑白的点分别作XY部的点. 这一题的边就是可以出售的单位面积2的土地,边的端点就是这个土地占用的X部和Y部的两个点. 这样就建好二分图,要求最多土地的答案显然是这个 ...

  8. HDU 1507 Uncle Tom's Inherited Land*

    题目大意:给你一个矩形,然后输入矩形里面池塘的坐标(不能放东西的地方),问可以放的地方中,最多可以放多少块1*2的长方形方块,并输出那些方块的位置. 题解:我们将所有未被覆盖的分为两种,即分为黑白格( ...

  9. hdu1507 Uncle Tom's Inherited Land* 二分匹配

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1507 将i+j为奇数的构成x集合中 将i+j为偶数的构成y集合中 然后就是构建二部图 关键就是构图 然 ...

随机推荐

  1. Python数据分析(二): Numpy技巧 (1/4)

    In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  

  2. OWLQN算法

    一.BFGS算法 算法思想如下: Step1   取初始点,初始正定矩阵,允许误差,令: Step2   计算: Step3   计算,使得 : Step4    令: Step5    如果,则取为 ...

  3. Vim的基本使用(一)

    本文为原创文章,转载请标明出处 目录 1.移动光标 2.屏幕滚动 3.模式查找 4.位置标记 5.删除文本 6.撤销与重做 7.插入文本 8.复制与移动 9.修改文本 10.写入与退出 1. 移动光标 ...

  4. Java历程-初学篇 Day04选择结构(1)

    一,if 1,单分支 if(条件){ } 示例: 2,双分支 if(条件){ }else{ } 示例: 3,多重if if(条件){ }else if(条件){ }else{ } 示例: 4,嵌套if ...

  5. Python实战之SocketServer模块

    文章出处:http://www.cnblogs.com/wupeiqi/articles/5040823.html SocketServer内部使用 IO多路复用 以及 "多线程" ...

  6. 有关 Hybrid 开发模式实践总结

    前言 随着公司业务不断发展,移动开发项目越来越多,项目任务时间紧,我们内部开发流程是以项目为导向,有别于一般公司对产品不断迭代的做法,但移动端开发人员资源有限,需要在不同项目之间做业务场景切换开发,就 ...

  7. 基于RTKLIB构建高并发通信测试工具

    1. RTKLIB基础动态库生成 RTKLIB是全球导航卫星系统GNSS(global navigation satellite system)的标准&精密定位开源程序包,由日本东京海洋大学的 ...

  8. Uploadify 3.2上传文件,限制类型,大小,传递参数等

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="upload.aspx.cs ...

  9. 一份传世典文:十年编程(Teach Yourself Programming in Ten Years)

    原文:Teach Yourself Programming in Ten Years作者:郭晓刚翻译:郭晓刚(foosleeper@163.net)最后修订日期:2004-3-192005-01-12 ...

  10. Python学习笔记(八)

    Python学习笔记(八): 复习回顾 递归函数 内置函数 1. 复习回顾 1. 深浅拷贝 2. 集合 应用: 去重 关系操作:交集,并集,差集,对称差集 操作: 定义 s1 = set('alvin ...