题目描述

如题,一开始有N个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:

操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除或第x和第y个数在用一个堆内,则无视此操作)

操作2: 2 x 输出第x个数所在的堆最小数,并将其删除(若第x个数已经被删除,则输出-1并无视删除操作)

输入输出格式

输入格式:

第一行包含两个正整数N、M,分别表示一开始小根堆的个数和接下来操作的个数。

第二行包含N个正整数,其中第i个正整数表示第i个小根堆初始时包含且仅包含的数。

接下来M行每行2个或3个正整数,表示一条操作,格式如下:

操作1 : 1 x y

操作2 : 2 x

输出格式:

输出包含若干行整数,分别依次对应每一个操作2所得的结果。

裸题吧,附上模板。

 #include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std; const int NN=1e5+; int n,m,a[NN];
int r[NN],l[NN],d[NN],fa[NN];
bool died[NN]; int find(int num)
{
if (fa[num]!=num) return find(fa[num]);
return num;
}
int merge(int x,int y)
{
if (!x) return y;
if (!y) return x;
if (a[x]>a[y]) swap(x,y);
r[x]=merge(r[x],y);
fa[r[x]]=x;
if (d[r[x]]>d[l[x]]) swap(r[x],l[x]);
d[x]=d[r[x]]+;
return x;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
{
fa[i]=i;
scanf("%d",&a[i]);
}
for (int i=;i<=m;i++)
{
int k,u,v;
scanf("%d",&k);
if (k==)
{
scanf("%d%d",&u,&v);
if (died[u]||died[v]) continue;
int x=find(u),y=find(v);
if (x!=y)
{
int t=merge(x,y);
fa[t]=t;
}
}
else
{
scanf("%d",&u);
int x=find(u);
if (died[x]) printf("-1\n");
else
{
printf("%d\n",a[x]);
died[x]=;
int t=merge(r[x],l[x]);
fa[t]=t;
}
}
}
}

P3377的更多相关文章

  1. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  2. luogu【P3377】 【模板】左偏树

    左偏树 顾名思义 向左偏的树 (原题入口) 它有啥子用呢??? 当然是进行堆的合并啦2333普通堆的合并其实是有点慢的(用优先队列的话 只能 一个pop 一个push 来操作 复杂度就是O(n log ...

  3. 【luogu P3377 左偏树(可并堆)】 模板

    题目连接:https://www.luogu.org/problemnew/show/P3377 #include <cstdio> #include <cstring> #i ...

  4. 模板 可并堆【洛谷P3377】 【模板】左偏树(可并堆)

    P3377 [模板]左偏树(可并堆) 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删 ...

  5. 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集

    https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...

  6. 洛谷 P3377 模板左偏树

    题目:https://www.luogu.org/problemnew/show/P3377 左偏树的模板题: 加深了我对空 merge 的理解: 结构体的编号就是原序列的位置. 代码如下: #inc ...

  7. 洛谷P3377 【模板】左偏树(可并堆) 题解

    作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...

  8. 2021.08.01 P3377 左偏树模板

    2021.08.01 P3377 左偏树模板 P3377 [模板]左偏树(可并堆) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) #include<iostream> ...

  9. [模板][P3377]杜教筛

    Description: 求 $ \sum_{i=1}^n \phi(i) ,\sum_{i=1}^n \mu(i)$ Hint: \(n<=10^{10}​\) Solution: 考虑积性函 ...

随机推荐

  1. 10个经典的Java面试题集合(转载)

    1.Java的HashMap是如何工作的? HashMap是一个针对数据结构的键值,每个键都会有相应的值,关键是识别这样的值. HashMap 基于 hashing 原理,我们通过 put ()和 g ...

  2. CSS display和visibility的用法和区别

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt408 大多数人很容易将CSS属性display和visibility混淆,它 ...

  3. angularJS+Ionic移动端图片上传的解决办法

    前端开发中经常会碰到图片上传的问题,网上的解决办法很多,可是有些图片上传的插件会有一些附属的插件,因此因为一个图片上传的问题可能额需要引入其他插件到项目中,久而久之项目会不伦不类,有时候插件之间也会有 ...

  4. 【小白成长撸】--多项式求圆周率PI

    /*程序的版权和版本声明部分: *Copyright(c) 2016,电子科技大学本科生 *All rights reserved. *文件名:多项式求PI *程序作用:计算圆周率PI *作者:Amo ...

  5. c# DateTime 类

    获得当前系统时间: DateTime dt = DateTime.Now;Environment.TickCount可以得到"系统启动到现在"的毫秒值DateTime now = ...

  6. (转)C语言malloc()与free()的使用

    如何使用 malloc 函数 本文为转载内容,原文地址请点击 不要莫名其妙,其实上面这段小小的对话,就是malloc的使用过程.malloc是一个函数,专门用来从堆上分配内存.使用malloc函数需要 ...

  7. 1~N任意三个数最大的最小公倍数(Java版)

    最大最小公倍数 如题 话不多说,直接上代码 public class MaxCommonMultiple{ public static void main(String[] args) { Scann ...

  8. ajax中后台string转json

    首先导入alibaba的fastJson包 后台: String thirdPage1=prop.getProperty("thirdPage1"); String thirdPa ...

  9. 201521123078 《Java程序设计》 第8周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 1.List中指定元素的删除(题目4-1) 1.1 实验总结 public static vo ...

  10. 201521123052《Java程序设计》第7周学习总结

    1. 本周学习总结 参考资料: XMind 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 public boolean contains(Ob ...