题意与分析

一条很有趣的题目。给一个无向图,问它是否无环,且可以在上面找到一条线,使所有的顶点要么在线上要么不在线上但在与线相连的边上。

那么首先要确定所有点联系在一起。这个可以同判环一起处理:如果建图新加入的点同原先的点含有同一个祖先,那它肯定是环没跑了。然后遍历所有节点,看看是否拥有同一个祖先。这样就完成了两个任务。

接下来需要一点分析:我们可以证明,这条线(如果存在)一定是树的直径,或者是与树的直径长度相等(在端点差一个点那边分的叉)。为什么?如果这条线不是树的直径,那么长度一定小于直径,且树的直径与它的交点一定至少会延伸出两个点,那么这就一定会翻车,这条线一定不会满足条件。所以如果有一条线满足这个条件,那它必须得是树的直径。然后就是之前知识学习的地方,先找树的直径(这里需要记录端点,我没有采用栈的方法记录,采用了一种比较简单的方法解决),然后判断非树直径的点是否度数为1即可。

这题综合考察了树的几个性质,非常适合学习/复习。比如说我竟然忘了并查集怎么判环- -

代码

/*
* Filename: poj3310.cpp
* Date: 2018-11-05
*/
#include <iostream>
#include <cstring>
#include <vector> #define INF 0x3f3f3f3f
#define PB push_back
#define MP make_pair
#define fi first
#define se second
#define rep(i,a,b) for(repType i=(a); i<=(b); ++i)
#define per(i,a,b) for(repType i=(a); i>=(b); --i)
#define ZERO(x) memset(x, 0, sizeof(x))
#define MS(x,y) memset(x, y, sizeof(x))
#define ALL(x) (x).begin(), (x).end() #define QUICKIO \
ios::sync_with_stdio(false); \
cin.tie(0); \
cout.tie(0);
#define DEBUG(...) fprintf(stderr, __VA_ARGS__), fflush(stderr) using namespace std;
typedef int repType; const int MAXN=105;
vector<int> G[MAXN]; int pa[MAXN],n;
int find_pa(int x)
{
return pa[x]==x?x:pa[x]=find_pa(pa[x]);
}
bool union_pa(int x,int y)
{
int fx=find_pa(x),
fy=find_pa(y);
if(fx!=fy) pa[fx]=fy;
else return false;
return true;
} bool judge_cnt()
{
int cnt=0;
rep(i,1,n)
if(pa[find_pa(i)]==i) cnt++;
return cnt==1;
} int dep[MAXN];
void dfs(int x)
{
rep(i,0,int(G[x].size())-1)
if(dep[G[x][i]]==-1)
{
dep[G[x][i]]=dep[x]+1;
dfs(G[x][i]);
}
}
bool on_road[MAXN];
bool on_road_tmp[MAXN];
int maxdep=0;
void dfs2(int now, int ndep)
{
if(ndep>=maxdep)
{
memcpy(on_road,on_road_tmp,sizeof(on_road));
maxdep=ndep;
} rep(i,0,int(G[now].size())-1)
if(dep[G[now][i]]==-1)
{
dep[G[now][i]]=dep[now]+1;
on_road_tmp[G[now][i]]=true;
dfs2(G[now][i],ndep+1);
on_road_tmp[G[now][i]]=false;
}
} int
main()
{
int kase=0;
while(cin>>n)
{
if(!n) break;
rep(i,1,n) G[i].clear();
rep(i,1,n) pa[i]=i;
int e; cin>>e;
bool has_loop=false;
rep(i,1,e)
{
int u,v; cin>>u>>v;
G[u].PB(v);
G[v].PB(u);
if(find_pa(u)!=find_pa(v)) union_pa(u,v);
else has_loop=true;
}
if(e>n-1) has_loop=true;
bool ok=true;
if(has_loop || !judge_cnt())
ok=false;
if(ok)
{
MS(dep,-1);
dep[1]=0;
dfs(1);
int pnt_id=1;
maxdep=0;
rep(i,1,n) if(dep[pnt_id]<dep[i])
{
pnt_id=i;
maxdep=dep[pnt_id];
}
ZERO(on_road_tmp);
MS(dep,-1);
dep[pnt_id]=0;
on_road_tmp[pnt_id]=true;
dfs2(pnt_id, 0);
rep(i,1,n)
if(!on_road[i]&&G[i].size()!=1)
{
ok=false; break;
}
}
if(ok) cout<<"Graph "<<++kase<<" is a caterpillar."<<endl;
else cout<<"Graph "<<++kase<<" is not a caterpillar."<<endl;
}
return 0;
}

「日常训练」Caterpillar(POJ-3310)的更多相关文章

  1. 「日常训练」ZgukistringZ(Codeforces Round #307 Div. 2 B)

    题意与分析(CodeForces 551B) 这他妈哪里是日常训练,这是日常弟中弟. 题意是这样的,给出一个字符串A,再给出两个字符串B,C,求A中任意量字符交换后(不限制次数)能够得到的使B,C作为 ...

  2. 「日常训练」 Fire!(UVA-11624)

    与其说是训练不如说是重温.重新写了Java版本的代码. import java.util.*; import java.math.*; import java.io.BufferedInputStre ...

  3. 「日常训练」COMMON 约数研究(HYSBZ-1968)

    题意与分析 感谢https://www.cnblogs.com/Leohh/p/7512960.html的题解.这题话说原来不在我的训练范围,正好有个同学问我,我就拿来做做.数学果然不是我擅长的啊,这 ...

  4. 「日常训练」Mike and Feet(Codeforces Round #305 Div. 2 D)

    题意 (Codeforces 548D) 对一个有$n$个数的数列,我们要求其连续$x(1\le x\le n)$(对于每个$x$,这样的连续group有若干个)的最小数的最大值. 分析 这是一道用了 ...

  5. 「日常训练」「小专题·图论」 Frogger (1-1)

    题意 分析 变形的dijkstra. 分析题意之后补充. 代码 // Origin: // Theme: Graph Theory (Basic) // Date: 080518 // Author: ...

  6. 「日常训练」 Mike and Fun (CFR305D2B)

    题意(CodeForces 548B) 每次对01矩阵中的一位取反,问每次操作后,单列中最长连续1的长度. 分析 非常非常简单,但是我当时训练的时候WA了四次...无力吐槽了,人间 不值得.jpg 代 ...

  7. 「日常训练」Common Subexpression Elimination(UVa-12219)

    今天做的题目就是抱佛脚2333 懂的都懂. 这条题目干了好几天,最后还是参考别人的代码敲出来了,但是自己独立思考了两天多,还是有收获的. 思路分析 做这条题我是先按照之前的那条题目(The SetSt ...

  8. 「日常训练」Magic Stones(CodeForces-1110E)

    题意 给定两个数组c和t,可以对c数组中的任何元素变换\(c_i\)​成\(c_{i+1}+c_{i-1}-c_i\)​,问c数组在若干次变换后能否变换成t数组. 分析 这种魔法题目我是同样的没做过. ...

  9. 「日常训练」Jongmah(Codeforces-1110D)

    题意 你有n个数字,范围[1, m],你可以选择其中的三个数字构成一个三元组,但是这三个数字必须是连续的或者相同的,每个数字只能用一次,问这n个数字最多构成多少个三元组? 分析 根据官方Editori ...

随机推荐

  1. ElasticSearch5.0+版本分词热更新实践记录

    前言 刚开始接触ElasticSearch的时候,版本才是2.3.4,短短的时间,现在都更新到5.0+版本了.分词和head插件好像用法也不一样了,本博客记录如何配置Elasticsearch的Hea ...

  2. linux如何安装IntelliJ IDEA

    http://www.linuxidc.com/Linux/2016-12/137946.htm 创建的那个启动器脚本,只要这样输入就可以直接启动idea了

  3. [后台管理]一套用vue搭建的框架

    1.提前的准备工作 前端开发工具有许多,当下流行的sublime等等都是前端比较受欢迎的,nodeJS和Vue等都是前端框架搭建流行的一套 安装nodeJS 设置环境变量 安装Visual Studi ...

  4. PHP实现数组递归转义的方法

    本文以实例形式讲述了PHP实现数组递归转义的方法,分享给大家供大家参考之用.具体方法如下: 主要功能代码如下: $arr = array('a"aa',array("c'd&quo ...

  5. 微信小程序 | 未来O2O电商的“阴谋”

    发展历史 2016年1月11日,微信之父张小龙时隔多年的公开亮相,提出了公众号服务的短板,而透露微信内部正在研发的新形态工具,称之"微信小程序". 2016年9月21日,微信小程序 ...

  6. IPC进程间通信---共享内存

    共享内存 共享内存:共享内存就是分配一块能被其它进程访问的内存.每个共享内存段在内核中维护着一个内部结构shmid_ds, 该结构定义在头文件linux/shm.h中,其结构如下: struct sh ...

  7. linux 学习第八天

    一.特殊权限 1.SUID 让命令的执行者临时获取到了所有者权限(rws) 2.SGID 让目录中新的文件的所有组,归属上级目录 3.SBIT 粘滞位 让目录内的文件只能被文件所有者删除 4.修改文件 ...

  8. 第一课、安装登录CentOS7

    一.学习之初 1.学习这个课程的目的是,高薪就业,搞运维. 2.应该在宁波发展. 3.大概给自己定的计划是4个月能学习2遍. 4.学好之后就跳槽. 5.2年左右的时间要达到1.5W争取. 学习方法: ...

  9. JavaScript手绘风格的图形库RoughJS使用指南

    RoughJS是一个轻量级的JavaScript图形库(压缩后约9KB),可以让你在网页上绘制素描风格.手绘样式般的图形.RoughJS定义了绘制直线,曲线,圆弧,多边形,圆和椭圆的图元,同时它还支持 ...

  10. linux 编译安装pureFTP

    安装openssl支持 wget -c https://www.openssl.org/source/openssl.org/source/openssl-1.1.0c.tar.gz tar -zxv ...